equilibrium

PathDimensionsTypeUnitsDescription

equilibrium

Description of a 2D, axi-symmetric, tokamak equilibrium; result of an equilibrium code.

equilibrium.code

STRUCTURE

Generic decription of the code-specific parameters for the code that has produced this IDS

equilibrium.code.commit

STR_0D

Unique commit reference of software

equilibrium.code.description

STR_0D

Short description of the software (type, purpose)

equilibrium.code.library

[1...N]

STRUCT_ARRAY

List of external libraries used by the code that has produced this IDS

equilibrium.code.library[:].commit

STR_0D

Unique commit reference of software

equilibrium.code.library[:].description

STR_0D

Short description of the software (type, purpose)

equilibrium.code.library[:].name

STR_0D

Name of software

equilibrium.code.library[:].parameters

STR_0D

List of the code specific parameters in XML format

equilibrium.code.library[:].repository

STR_0D

URL of software repository

equilibrium.code.library[:].version

STR_0D

Unique version (tag) of software

equilibrium.code.name

STR_0D

Name of software generating IDS

equilibrium.code.output_flag

[equilibrium.time]

INT_1D

Output flag : 0 means the run is successful, other values mean some difficulty has been encountered, the exact meaning is then code specific. Negative values mean the result shall not be used.

equilibrium.code.parameters

STR_0D

List of the code specific parameters in XML format

equilibrium.code.repository

STR_0D

URL of software repository

equilibrium.code.version

STR_0D

Unique version (tag) of software

equilibrium.grids_ggd

(alpha)

[equilibrium.grids_ggd[:].time]

STRUCT_ARRAY

Grids (using the Generic Grid Description), for various time slices. The timebase of this array of structure must be a subset of the time_slice timebase

equilibrium.grids_ggd[:].grid

(alpha)

[1...N]

STRUCT_ARRAY

Set of GGD grids for describing the equilibrium, at a given time slice

equilibrium.grids_ggd[:].grid[:].grid_subset

(alpha)

[1...N]

STRUCT_ARRAY

Grid subsets

equilibrium.grids_ggd[:].grid[:].grid_subset[:].base

(alpha)

[1...N]

STRUCT_ARRAY

Set of bases for the grid subset. For each base, the structure describes the projection of the base vectors on the canonical frame of the grid.

equilibrium.grids_ggd[:].grid[:].grid_subset[:].base[:].jacobian

(alpha)

[equilibrium.grids_ggd[:].grid[:].grid_subset[:].element]

FLT_1D (uncertain)

mixed

Metric Jacobian

equilibrium.grids_ggd[:].grid[:].grid_subset[:].base[:].tensor_contravariant

(alpha)

[equilibrium.grids_ggd[:].grid[:].grid_subset[:].element,
1...N,
1...N]

FLT_3D (uncertain)

mixed

Contravariant metric tensor, given on each element of the subgrid (first dimension)

equilibrium.grids_ggd[:].grid[:].grid_subset[:].base[:].tensor_covariant

(alpha)

[equilibrium.grids_ggd[:].grid[:].grid_subset[:].element,
1...N,
1...N]

FLT_3D (uncertain)

mixed

Covariant metric tensor, given on each element of the subgrid (first dimension)

equilibrium.grids_ggd[:].grid[:].grid_subset[:].dimension

(alpha)

INT_0D

Space dimension of the grid subset elements. This must be equal to the sum of the dimensions of the individual objects forming the element.

equilibrium.grids_ggd[:].grid[:].grid_subset[:].element

(alpha)

[1...N]

STRUCT_ARRAY

Set of elements defining the grid subset. An element is defined by a combination of objects from potentially all spaces

equilibrium.grids_ggd[:].grid[:].grid_subset[:].element[:].object

(alpha)

[1...N]

STRUCT_ARRAY

Set of objects defining the element

equilibrium.grids_ggd[:].grid[:].grid_subset[:].element[:].object[:].dimension

(alpha)

INT_0D

Dimension of the object

equilibrium.grids_ggd[:].grid[:].grid_subset[:].element[:].object[:].index

(alpha)

INT_0D

Object index

equilibrium.grids_ggd[:].grid[:].grid_subset[:].element[:].object[:].space

(alpha)

INT_0D

Index of the space from which that object is taken

equilibrium.grids_ggd[:].grid[:].grid_subset[:].identifier

(alpha)

STRUCTURE

Grid subset identifier
0) unspecified : unspecified
1) nodes : All nodes (0D) belonging to the associated spaces, implicit declaration (no need to replicate the grid elements in the grid_subset structure). In case of a structured grid represented with multiple 1D spaces, the order of the implicit elements in the grid_subset follows Fortran ordering, i.e. iterate always on nodes of the first space first, then move to the second node of the second space, ... : [((s1_1 to s1_end), s2_1, s3_1 ... sN_1), (((s1_1 to s1_end), s2_2, s3_1, ... sN_1)), ... ((s1_1 to s1_end), s2_end, s3_end ... sN_end)]
200) nodes_combining_spaces : All nodes (0D) belonging to the first space, implicitly extended in other dimensions represented by the other spaces in a structured way. The number of subset elements is thus equal to the number of nodes in the first space. Implicit declaration (no need to replicate the grid elements in the grid_subset structure).
2) edges : All edges (1D) belonging to the associated spaces, implicit declaration (no need to replicate the grid elements in the grid_subset structure)
3) x_aligned_edges : All x-aligned (poloidally) aligned edges belonging to the associated spaces
4) y_aligned_edges : All y-aligned (radially) aligned edges belonging to the associated spaces
5) cells : All cells (2D) belonging to the associated spaces, implicit declaration (no need to replicate the grid elements in the grid_subset structure)
6) x_points : Nodes defining x-points
7) core_cut : y-aligned edges inside the separatrix connecting to the active x-point
8) PFR_cut : y-aligned edges in the private flux region connecting to the active x-point
9) outer_throat : y-aligned edges in the outer SOL connecting to the active x-point
10) inner_throat : y-aligned edges in the inner SOL connecting to the active x-point
11) outer_midplane : y-aligned edges connecting to the node closest to outer midplane on the separatrix
12) inner_midplane : y-aligned edges connecting to the node closest to inner midplane on the separatrix
13) outer_target : y-aligned edges defining the outer target
14) inner_target : y-aligned edges defining the inner target
15) core_boundary : Innermost x-aligned edges
16) separatrix : x-aligned edges defining the active separatrix
17) main_chamber_wall : x-aligned edges defining main chamber wall outside of the divertor regions
18) outer_baffle : x-aligned edges defining the chamber wall of the outer active divertor region
19) inner_baffle : x-aligned edges defining the chamber wall of the inner active divertor region
20) outer_PFR_wall : x-aligned edges defining the private flux region wall of the outer active divertor region
21) inner_PFR_wall : x-aligned edges defining the private flux region wall of the inner active divertor region
22) core : Cells inside the active separatrix
23) sol : Cells defining the main SOL outside of the divertor regions
24) outer_divertor : Cells defining the outer divertor region
25) inner_divertor : Cells defining the inner divertor region
26) core_sol : x-aligned edges defining part of active separatrix separating core and sol
27) full_main_chamber_wall : main_chamber_wall + outer_baffle(s) + inner_baffle(s)
28) full_PFR_wall : outer_PFR__wall(s) + inner_PFR_wall(s)
29) core_cut_X2 : y-aligned edges inside the separatrix connecting to the non-active x-point
30) PFR_cut_X2 : y-aligned edges in the private flux region connecting to the non-active x-point
31) outer_throat_X2 : y-aligned edges in the outer SOL connecting to the non-active x-point
32) inner_throat_X2 : y-aligned edges in the inner SOL connecting to the non-active x-point
33) separatrix_2 : x-aligned edges defining the non-active separatrix
34) outer_baffle_2 : x-aligned edges defining the chamber wall of the outer non-active divertor region
35) inner_baffle_2 : x-aligned edges defining the chamber wall of the inner non-active divertor region
36) outer_PFR_wall_2 : x-aligned edges defining the private flux region wall of the outer non-active divertor region
37) inner_PFR_wall_2 : x-aligned edges defining the private flux region wall of the inner non-active divertor region
38) intra_sep : Cells between the two separatrices
39) outer_divertor_2 : Cells defining the outer inactive divertor region
40) inner_divertor_2 : Cells defining the inner inactive divertor region
41) outer_target_2 : y-aligned edges defining the outer inactive target
42) inner_target_2 : y-aligned edges defining the inner inactive target
43) volumes : All volumes (3D) belonging to the associated spaces, implicit declaration (no need to replicate the grid elements in the grid_subset structure)
44) full_wall : All edges defining walls, baffles, and targets
45) outer_sf_leg_entrance_1 : y-aligned edges defining the SOL entrance of the first snowflake outer leg
46) outer_sf_leg_entrance_2 : y-aligned edges defining the SOL entrance of the third snowflake outer leg
47) outer_sf_pfr_connection_1 : y-aligned edges defining the connection between the outer snowflake entrance and third leg
48) outer_sf_pfr_connection_2 : y-aligned edges defining the connection between the outer snowflake first and second leg
100) magnetic_axis : Point corresponding to the magnetic axis
101) outer_mid_plane_separatrix : Point on active separatrix at outer mid-plane
102) inner_mid_plane_separatrix : Point on active separatrix at inner mid-plane
103) outer_target_separatrix : Point on active separatrix at outer active target
104) inner_target_separatrix : Point on active separatrix at inner active target
105) outer_target_separatrix_2 : Point on non-active separatrix at outer non-active target
106) inner_target_separatrix_2 : Point on non-active separatrix at inner non-active target

equilibrium.grids_ggd[:].grid[:].grid_subset[:].identifier.description

(alpha)

STR_0D

Verbose description

equilibrium.grids_ggd[:].grid[:].grid_subset[:].identifier.index

(alpha)

INT_0D

Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index.

equilibrium.grids_ggd[:].grid[:].grid_subset[:].identifier.name

(alpha)

STR_0D

Short string identifier

equilibrium.grids_ggd[:].grid[:].grid_subset[:].metric

(alpha)

STRUCTURE

Metric of the canonical frame onto Cartesian coordinates

equilibrium.grids_ggd[:].grid[:].grid_subset[:].metric.jacobian

(alpha)

[equilibrium.grids_ggd[:].grid[:].grid_subset[:].element]

FLT_1D (uncertain)

mixed

Metric Jacobian

equilibrium.grids_ggd[:].grid[:].grid_subset[:].metric.tensor_contravariant

(alpha)

[equilibrium.grids_ggd[:].grid[:].grid_subset[:].element,
1...N,
1...N]

FLT_3D (uncertain)

mixed

Contravariant metric tensor, given on each element of the subgrid (first dimension)

equilibrium.grids_ggd[:].grid[:].grid_subset[:].metric.tensor_covariant

(alpha)

[equilibrium.grids_ggd[:].grid[:].grid_subset[:].element,
1...N,
1...N]

FLT_3D (uncertain)

mixed

Covariant metric tensor, given on each element of the subgrid (first dimension)

equilibrium.grids_ggd[:].grid[:].identifier

(alpha)

STRUCTURE

Grid identifier
0) unspecified : unspecified
1) linear : Linear
2) cylinder : Cylindrical geometry (straight in axial direction)
3) limiter : Limiter
4) SN : Single null
5) CDN : Connected double null
6) DDN_bottom : Disconnected double null with inner X-point below the midplane
7) DDN_top : Disconnected double null with inner X-point above the midplane
8) annulus : Annular geometry (not necessarily with straight axis)
9) stellarator_island : Stellarator island geometry
10) structured_spaces : Structured grid represented with multiple spaces of dimension 1
11) LFS_snowflake_minus : Snowflake grid with secondary x point on the low field side, and the secondary separatrix on top of the primary
12) LFS_snowflake_plus : Snowflake grid with secondary x point to the right of the primary, and the secondary separatrix below the primary
100) reference : Refers to a GGD described in another IDS indicated by grid_path. In such a case, do not fill the grid_ggd node of this IDS

equilibrium.grids_ggd[:].grid[:].identifier.description

(alpha)

STR_0D

Verbose description

equilibrium.grids_ggd[:].grid[:].identifier.index

(alpha)

INT_0D

Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index.

equilibrium.grids_ggd[:].grid[:].identifier.name

(alpha)

STR_0D

Short string identifier

equilibrium.grids_ggd[:].grid[:].path

(alpha)

STR_0D

Path of the grid, including the IDS name, in case of implicit reference to a grid_ggd node described in another IDS. To be filled only if the grid is not described explicitly in this grid_ggd structure. Example syntax: 'wall:0/description_ggd(1)/grid_ggd', means that the grid is located in the wall IDS, occurrence 0, with ids path 'description_ggd(1)/grid_ggd'. See the link below for more details about IDS paths

equilibrium.grids_ggd[:].grid[:].space

(alpha)

[1...N]

STRUCT_ARRAY

Set of grid spaces

equilibrium.grids_ggd[:].grid[:].space[:].coordinates_type

(alpha)

[1...N]

INT_1D

Type of coordinates describing the physical space, for every coordinate of the space. The size of this node therefore defines the dimension of the space. The meaning of these predefined integer constants can be found in the Data Dictionary under utilities/coordinate_identifier.xml

equilibrium.grids_ggd[:].grid[:].space[:].geometry_type

(alpha)

STRUCTURE

Type of space geometry (0: standard, 1:Fourier, >1: Fourier with periodicity)

equilibrium.grids_ggd[:].grid[:].space[:].geometry_type.description

(alpha)

STR_0D

Verbose description

equilibrium.grids_ggd[:].grid[:].space[:].geometry_type.index

(alpha)

INT_0D

Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index.

equilibrium.grids_ggd[:].grid[:].space[:].geometry_type.name

(alpha)

STR_0D

Short string identifier

equilibrium.grids_ggd[:].grid[:].space[:].identifier

(alpha)

STRUCTURE

Space identifier
0) unspecified : unspecified
1) primary_standard : Primary space defining the standard grid
2) primary_staggered : Primary space defining a grid staggered with respect to the primary standard space
3) secondary_structured : Secondary space defining additional dimensions that extend the primary standard space in a structured way

equilibrium.grids_ggd[:].grid[:].space[:].identifier.description

(alpha)

STR_0D

Verbose description

equilibrium.grids_ggd[:].grid[:].space[:].identifier.index

(alpha)

INT_0D

Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index.

equilibrium.grids_ggd[:].grid[:].space[:].identifier.name

(alpha)

STR_0D

Short string identifier

equilibrium.grids_ggd[:].grid[:].space[:].objects_per_dimension

(alpha)

[1...N]

STRUCT_ARRAY

Definition of the space objects for every dimension (from one to the dimension of the highest-dimensional objects). The index correspond to 1=nodes, 2=edges, 3=faces, 4=cells/volumes, .... For every index, a collection of objects of that dimension is described.

equilibrium.grids_ggd[:].grid[:].space[:].objects_per_dimension[:].geometry_content

(alpha)

STRUCTURE

Content of the ../object/geometry node for this dimension
0) unspecified : unspecified
1) node_coordinates : For nodes : node coordinates
11) node_coordinates_connection : For nodes : node coordinates, then connection length, and distance in the poloidal plane to the nearest solid surface outside the separatrix
21) edge_areas : For edges : contains 3 surface areas after uniform extension in the third dimension of the edges. Geometry(1) and geometry(2) are the projections of that area along the local poloidal and radial coordinate respectively. Geometry(3) is the full surface area of the extended edge
31) face_indices_volume : For faces : coordinates indices (ix, iy) of the face within the structured grid of the code. The third element contains the volume after uniform extension in the third dimension of the faces
32) face_indices_volume_connection : For faces : coordinates indices (ix, iy) of the face within the structured grid of the code. The third element contains the volume after uniform extension in the third dimension of the faces. The fourth element is the connection length. The fifth element is the distance in the poloidal plane to the nearest solid surface outside the separatrix

equilibrium.grids_ggd[:].grid[:].space[:].objects_per_dimension[:].geometry_content.description

(alpha)

STR_0D

Verbose description

equilibrium.grids_ggd[:].grid[:].space[:].objects_per_dimension[:].geometry_content.index

(alpha)

INT_0D

Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index.

equilibrium.grids_ggd[:].grid[:].space[:].objects_per_dimension[:].geometry_content.name

(alpha)

STR_0D

Short string identifier

equilibrium.grids_ggd[:].grid[:].space[:].objects_per_dimension[:].object

(alpha)

[1...N]

STRUCT_ARRAY

Set of objects for a given dimension

equilibrium.grids_ggd[:].grid[:].space[:].objects_per_dimension[:].object[:].boundary

(alpha)

[1...N]

STRUCT_ARRAY

Set of (n-1)-dimensional objects defining the boundary of this n-dimensional object

equilibrium.grids_ggd[:].grid[:].space[:].objects_per_dimension[:].object[:].boundary[:].index

(alpha)

INT_0D

Index of this (n-1)-dimensional boundary object

equilibrium.grids_ggd[:].grid[:].space[:].objects_per_dimension[:].object[:].boundary[:].neighbours

(alpha)

[1...N]

INT_1D

List of indices of the n-dimensional objects adjacent to the given n-dimensional object. An object can possibly have multiple neighbours on a boundary

equilibrium.grids_ggd[:].grid[:].space[:].objects_per_dimension[:].object[:].geometry

(alpha)

[1...N]

FLT_1D (uncertain)

mixed

Geometry data associated with the object, its detailed content is defined by ../../geometry_content. Its dimension depends on the type of object, geometry and coordinate considered.

equilibrium.grids_ggd[:].grid[:].space[:].objects_per_dimension[:].object[:].geometry_2d

(alpha)

[1...N,
1...N]

FLT_2D (uncertain)

mixed

2D geometry data associated with the object. Its dimension depends on the type of object, geometry and coordinate considered. Typically, the first dimension represents the object coordinates, while the second dimension would represent the values of the various degrees of freedom of the finite element attached to the object.

equilibrium.grids_ggd[:].grid[:].space[:].objects_per_dimension[:].object[:].measure

(alpha)

FLT_0D (uncertain)

m^dimension

Measure of the space object, i.e. physical size (length for 1d, area for 2d, volume for 3d objects,...)

equilibrium.grids_ggd[:].grid[:].space[:].objects_per_dimension[:].object[:].nodes

(alpha)

[1...N]

INT_1D

List of nodes forming this object (indices to objects_per_dimension(1)%object(:) in Fortran notation)

equilibrium.grids_ggd[:].time

(alpha)

FLT_0D

s

Time

equilibrium.ids_properties

STRUCTURE

Interface Data Structure properties. This element identifies the node above as an IDS

equilibrium.ids_properties.comment

STR_0D

Any comment describing the content of this IDS

equilibrium.ids_properties.creation_date

STR_0D

Date at which this data has been produced

equilibrium.ids_properties.homogeneous_time

INT_0D

This node must be filled (with 0, 1, or 2) for the IDS to be valid. If 1, the time of this IDS is homogeneous, i.e. the time values for this IDS are stored in the time node just below the root of this IDS. If 0, the time values are stored in the various time fields at lower levels in the tree. In the case only constant or static nodes are filled within the IDS, homogeneous_time must be set to 2

equilibrium.ids_properties.name

STR_0D

User-defined name for this IDS occurrence

equilibrium.ids_properties.occurrence

INT_0D

equilibrium.ids_properties.occurrence_type

STRUCTURE

Type of data contained in this occurrence
1) reconstruction : Equilibrium reconstruction
2) prediction_fixed : Equilibrium prediction, fixed boundary
3) prediction_free : Equilibrium prediction, free boundary
4) mapping : Used for mapping equilibrium results from one grid type / resolution to another, or for including variables not present in the first set such as the calculation of magnetic field of other derived parameters

equilibrium.ids_properties.occurrence_type.description

STR_0D

Verbose description

equilibrium.ids_properties.occurrence_type.index

INT_0D

Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index.

equilibrium.ids_properties.occurrence_type.name

STR_0D

Short string identifier

equilibrium.ids_properties.plugins

(alpha)

STRUCTURE

Information about the plugins used to write/read this IDS. This structure is filled automatically by the Access Layer at GET/PUT time, no need to fill it via a user program.

equilibrium.ids_properties.plugins.infrastructure_get

(alpha)

STRUCTURE

Plugin infrastructure used to GET the data

equilibrium.ids_properties.plugins.infrastructure_get.commit

(alpha)

STR_0D

Unique commit reference of software

equilibrium.ids_properties.plugins.infrastructure_get.description

(alpha)

STR_0D

Short description of the software (type, purpose)

equilibrium.ids_properties.plugins.infrastructure_get.name

(alpha)

STR_0D

Name of software used

equilibrium.ids_properties.plugins.infrastructure_get.repository

(alpha)

STR_0D

URL of software repository

equilibrium.ids_properties.plugins.infrastructure_get.version

(alpha)

STR_0D

Unique version (tag) of software

equilibrium.ids_properties.plugins.infrastructure_put

(alpha)

STRUCTURE

Plugin infrastructure used to PUT the data

equilibrium.ids_properties.plugins.infrastructure_put.commit

(alpha)

STR_0D

Unique commit reference of software

equilibrium.ids_properties.plugins.infrastructure_put.description

(alpha)

STR_0D

Short description of the software (type, purpose)

equilibrium.ids_properties.plugins.infrastructure_put.name

(alpha)

STR_0D

Name of software used

equilibrium.ids_properties.plugins.infrastructure_put.repository

(alpha)

STR_0D

URL of software repository

equilibrium.ids_properties.plugins.infrastructure_put.version

(alpha)

STR_0D

Unique version (tag) of software

equilibrium.ids_properties.plugins.node

(alpha)

[1...N]

STRUCT_ARRAY

Set of IDS nodes for which a plugin has been applied

equilibrium.ids_properties.plugins.node[:].get_operation

(alpha)

[1...N]

STRUCT_ARRAY

Plugins actually used to read back a node (potentially, multiple plugins can be applied, listed in reverse order of application). This information is filled by the plugin infrastructure during the GET operation.

equilibrium.ids_properties.plugins.node[:].get_operation[:].commit

(alpha)

STR_0D

Unique commit reference of software

equilibrium.ids_properties.plugins.node[:].get_operation[:].description

(alpha)

STR_0D

Short description of the software (type, purpose)

equilibrium.ids_properties.plugins.node[:].get_operation[:].name

(alpha)

STR_0D

Name of software used

equilibrium.ids_properties.plugins.node[:].get_operation[:].parameters

(alpha)

STR_0D

List of the code specific parameters in XML format

equilibrium.ids_properties.plugins.node[:].get_operation[:].repository

(alpha)

STR_0D

URL of software repository

equilibrium.ids_properties.plugins.node[:].get_operation[:].version

(alpha)

STR_0D

Unique version (tag) of software

equilibrium.ids_properties.plugins.node[:].path

(alpha)

STR_0D

Path of the node within the IDS, following the syntax given in the link below. If empty, means the plugin applies to the whole IDS.

equilibrium.ids_properties.plugins.node[:].put_operation

(alpha)

[1...N]

STRUCT_ARRAY

Plugins used to PUT a node (potentially, multiple plugins can be applied, if so they are listed by order of application)

equilibrium.ids_properties.plugins.node[:].put_operation[:].commit

(alpha)

STR_0D

Unique commit reference of software

equilibrium.ids_properties.plugins.node[:].put_operation[:].description

(alpha)

STR_0D

Short description of the software (type, purpose)

equilibrium.ids_properties.plugins.node[:].put_operation[:].name

(alpha)

STR_0D

Name of software used

equilibrium.ids_properties.plugins.node[:].put_operation[:].parameters

(alpha)

STR_0D

List of the code specific parameters in XML format

equilibrium.ids_properties.plugins.node[:].put_operation[:].repository

(alpha)

STR_0D

URL of software repository

equilibrium.ids_properties.plugins.node[:].put_operation[:].version

(alpha)

STR_0D

Unique version (tag) of software

equilibrium.ids_properties.plugins.node[:].readback

(alpha)

[1...N]

STRUCT_ARRAY

Plugins to be used to read back a node (potentially, multiple plugins can be applied, listed in reverse order of application)

equilibrium.ids_properties.plugins.node[:].readback[:].commit

(alpha)

STR_0D

Unique commit reference of software

equilibrium.ids_properties.plugins.node[:].readback[:].description

(alpha)

STR_0D

Short description of the software (type, purpose)

equilibrium.ids_properties.plugins.node[:].readback[:].name

(alpha)

STR_0D

Name of software used

equilibrium.ids_properties.plugins.node[:].readback[:].parameters

(alpha)

STR_0D

List of the code specific parameters in XML format

equilibrium.ids_properties.plugins.node[:].readback[:].repository

(alpha)

STR_0D

URL of software repository

equilibrium.ids_properties.plugins.node[:].readback[:].version

(alpha)

STR_0D

Unique version (tag) of software

equilibrium.ids_properties.provenance

(alpha)

STRUCTURE

Provenance information about this IDS

equilibrium.ids_properties.provenance.node

(alpha)

[1...N]

STRUCT_ARRAY

Set of IDS nodes for which the provenance is given. The provenance information applies to the whole structure below the IDS node. For documenting provenance information for the whole IDS, set the size of this array of structure to 1 and leave the child "path" node empty

equilibrium.ids_properties.provenance.node[:].path

(alpha)

STR_0D

Path of the node within the IDS, following the syntax given in the link below. If empty, means the provenance information applies to the whole IDS.

equilibrium.ids_properties.provenance.node[:].sources

(alpha)

[1...N]

STR_1D

List of sources used to import or calculate this node, identified as explained below. In case the node is the result of of a calculation / data processing, the source is an input to the process described in the "code" structure at the root of the IDS. The source can be an IDS (identified by a URI or a persitent identifier, see syntax in the link below) or non-IDS data imported directly from an non-IMAS database (identified by the command used to import the source, or the persistent identifier of the data source). Often data are obtained by a chain of processes, however only the last process input are recorded here. The full chain of provenance has then to be reconstructed recursively from the provenance information contained in the data sources.

equilibrium.ids_properties.provider

STR_0D

Name of the person in charge of producing this data

equilibrium.ids_properties.source

(obsolescent)

STR_0D

Source of the data (any comment describing the origin of the data : code, path to diagnostic signals, processing method, ...). Superseeded by the new provenance structure.

equilibrium.ids_properties.version_put

STRUCTURE

Version of the access layer package used to PUT this IDS

equilibrium.ids_properties.version_put.access_layer

STR_0D

Version of Access Layer used to PUT this IDS

equilibrium.ids_properties.version_put.access_layer_language

STR_0D

Programming language of the Access Layer high level API used to PUT this IDS

equilibrium.ids_properties.version_put.data_dictionary

STR_0D

Version of Data Dictionary used to PUT this IDS

equilibrium.time

[1...N]

FLT_1D_TYPE

s

Generic time

equilibrium.time_slice

[equilibrium.time_slice[:].time]

STRUCT_ARRAY

Set of equilibria at various time slices

equilibrium.time_slice[:].boundary

STRUCTURE

Description of the plasma boundary used by fixed-boundary codes and typically chosen at psi_norm = 99.x% of the separatrix

equilibrium.time_slice[:].boundary.active_limiter_point

STRUCTURE

RZ position of the active limiter point (point of the plasma boundary in contact with the limiter)

equilibrium.time_slice[:].boundary.active_limiter_point.r

FLT_0D (uncertain)

m

Major radius

equilibrium.time_slice[:].boundary.active_limiter_point.z

FLT_0D (uncertain)

m

Height

equilibrium.time_slice[:].boundary.b_flux_pol_norm

(obsolescent)

FLT_0D (uncertain)

-

Value of the normalised poloidal flux at which the boundary is taken

equilibrium.time_slice[:].boundary.elongation

FLT_0D (uncertain)

-

Elongation of the plasma boundary

equilibrium.time_slice[:].boundary.elongation_lower

FLT_0D (uncertain)

-

Elongation (lower half w.r.t. geometric axis) of the plasma boundary

equilibrium.time_slice[:].boundary.elongation_upper

FLT_0D (uncertain)

-

Elongation (upper half w.r.t. geometric axis) of the plasma boundary

equilibrium.time_slice[:].boundary.geometric_axis

STRUCTURE

RZ position of the geometric axis (defined as (Rmin+Rmax) / 2 and (Zmin+Zmax) / 2 of the boundary)

equilibrium.time_slice[:].boundary.geometric_axis.r

FLT_0D (uncertain)

m

Major radius

equilibrium.time_slice[:].boundary.geometric_axis.z

FLT_0D (uncertain)

m

Height

equilibrium.time_slice[:].boundary.lcfs

(obsolescent)

STRUCTURE

RZ description of the plasma boundary

equilibrium.time_slice[:].boundary.lcfs.r

(obsolescent)

[1...N]

FLT_1D (uncertain)

m

Major radius

equilibrium.time_slice[:].boundary.lcfs.z

(obsolescent)

[equilibrium.time_slice[:].boundary.lcfs.r]

FLT_1D (uncertain)

m

Height

equilibrium.time_slice[:].boundary.minor_radius

FLT_0D (uncertain)

m

Minor radius of the plasma boundary (defined as (Rmax-Rmin) / 2 of the boundary)

equilibrium.time_slice[:].boundary.outline

STRUCTURE

RZ outline of the plasma boundary

equilibrium.time_slice[:].boundary.outline.r

[1...N]

FLT_1D (uncertain)

m

Major radius

equilibrium.time_slice[:].boundary.outline.z

[equilibrium.time_slice[:].boundary.outline.r]

FLT_1D (uncertain)

m

Height

equilibrium.time_slice[:].boundary.psi

FLT_0D (uncertain)

Wb

Value of the poloidal flux at which the boundary is taken

equilibrium.time_slice[:].boundary.psi_norm

FLT_0D (uncertain)

-

Value of the normalised poloidal flux at which the boundary is taken (typically 99.x %), the flux being normalised to its value at the separatrix

equilibrium.time_slice[:].boundary.squareness_lower_inner

(alpha)

FLT_0D (uncertain)

-

Lower inner squareness of the plasma boundary (definition from T. Luce, Plasma Phys. Control. Fusion 55 (2013) 095009)

equilibrium.time_slice[:].boundary.squareness_lower_outer

(alpha)

FLT_0D (uncertain)

-

Lower outer squareness of the plasma boundary (definition from T. Luce, Plasma Phys. Control. Fusion 55 (2013) 095009)

equilibrium.time_slice[:].boundary.squareness_upper_inner

(alpha)

FLT_0D (uncertain)

-

Upper inner squareness of the plasma boundary (definition from T. Luce, Plasma Phys. Control. Fusion 55 (2013) 095009)

equilibrium.time_slice[:].boundary.squareness_upper_outer

(alpha)

FLT_0D (uncertain)

-

Upper outer squareness of the plasma boundary (definition from T. Luce, Plasma Phys. Control. Fusion 55 (2013) 095009)

equilibrium.time_slice[:].boundary.strike_point

[1...N]

STRUCT_ARRAY

Array of strike points, for each of them the RZ position is given

equilibrium.time_slice[:].boundary.strike_point[:].r

FLT_0D (uncertain)

m

Major radius

equilibrium.time_slice[:].boundary.strike_point[:].z

FLT_0D (uncertain)

m

Height

equilibrium.time_slice[:].boundary.triangularity

FLT_0D (uncertain)

-

Triangularity of the plasma boundary

equilibrium.time_slice[:].boundary.triangularity_lower

FLT_0D (uncertain)

-

Lower triangularity of the plasma boundary

equilibrium.time_slice[:].boundary.triangularity_upper

FLT_0D (uncertain)

-

Upper triangularity of the plasma boundary

equilibrium.time_slice[:].boundary.type

INT_0D

0 (limiter) or 1 (diverted)

equilibrium.time_slice[:].boundary.x_point

[1...N]

STRUCT_ARRAY

Array of X-points, for each of them the RZ position is given

equilibrium.time_slice[:].boundary.x_point[:].r

FLT_0D (uncertain)

m

Major radius

equilibrium.time_slice[:].boundary.x_point[:].z

FLT_0D (uncertain)

m

Height

equilibrium.time_slice[:].boundary_secondary_separatrix

STRUCTURE

Geometry of the secondary separatrix, defined as the outer flux surface with an X-point

equilibrium.time_slice[:].boundary_secondary_separatrix.distance_inner_outer

FLT_0D (uncertain)

m

Distance between the inner and outer separatrices, in the major radius direction, at the plasma outboard and at the height corresponding to the maximum R for the inner separatrix.

equilibrium.time_slice[:].boundary_secondary_separatrix.outline

STRUCTURE

RZ outline of the plasma boundary

equilibrium.time_slice[:].boundary_secondary_separatrix.outline.r

[1...N]

FLT_1D (uncertain)

m

Major radius

equilibrium.time_slice[:].boundary_secondary_separatrix.outline.z

[equilibrium.time_slice[:].boundary_secondary_separatrix.outline.r]

FLT_1D (uncertain)

m

Height

equilibrium.time_slice[:].boundary_secondary_separatrix.psi

FLT_0D (uncertain)

Wb

Value of the poloidal flux at the separatrix

equilibrium.time_slice[:].boundary_secondary_separatrix.strike_point

[1...N]

STRUCT_ARRAY

Array of strike points, for each of them the RZ position is given

equilibrium.time_slice[:].boundary_secondary_separatrix.strike_point[:].r

FLT_0D (uncertain)

m

Major radius

equilibrium.time_slice[:].boundary_secondary_separatrix.strike_point[:].z

FLT_0D (uncertain)

m

Height

equilibrium.time_slice[:].boundary_secondary_separatrix.x_point

[1...N]

STRUCT_ARRAY

Array of X-points, for each of them the RZ position is given

equilibrium.time_slice[:].boundary_secondary_separatrix.x_point[:].r

FLT_0D (uncertain)

m

Major radius

equilibrium.time_slice[:].boundary_secondary_separatrix.x_point[:].z

FLT_0D (uncertain)

m

Height

equilibrium.time_slice[:].boundary_separatrix

STRUCTURE

Description of the plasma boundary at the separatrix

equilibrium.time_slice[:].boundary_separatrix.active_limiter_point

STRUCTURE

RZ position of the active limiter point (point of the plasma boundary in contact with the limiter)

equilibrium.time_slice[:].boundary_separatrix.active_limiter_point.r

FLT_0D (uncertain)

m

Major radius

equilibrium.time_slice[:].boundary_separatrix.active_limiter_point.z

FLT_0D (uncertain)

m

Height

equilibrium.time_slice[:].boundary_separatrix.closest_wall_point

STRUCTURE

Position and distance to the plasma boundary of the point of the first wall which is the closest to plasma boundary

equilibrium.time_slice[:].boundary_separatrix.closest_wall_point.distance

FLT_0D (uncertain)

m

Distance to the plasma boundary

equilibrium.time_slice[:].boundary_separatrix.closest_wall_point.r

FLT_0D (uncertain)

m

Major radius

equilibrium.time_slice[:].boundary_separatrix.closest_wall_point.z

FLT_0D (uncertain)

m

Height

equilibrium.time_slice[:].boundary_separatrix.dr_dz_zero_point

STRUCTURE

Outboard point on the separatrix on which dr/dz = 0 (local maximum of the major radius of the separatrix). In case of multiple local maxima, the closest one from z=z_magnetic_axis is chosen.

equilibrium.time_slice[:].boundary_separatrix.dr_dz_zero_point.r

FLT_0D (uncertain)

m

Major radius

equilibrium.time_slice[:].boundary_separatrix.dr_dz_zero_point.z

FLT_0D (uncertain)

m

Height

equilibrium.time_slice[:].boundary_separatrix.elongation

FLT_0D (uncertain)

-

Elongation of the plasma boundary

equilibrium.time_slice[:].boundary_separatrix.elongation_lower

FLT_0D (uncertain)

-

Elongation (lower half w.r.t. geometric axis) of the plasma boundary

equilibrium.time_slice[:].boundary_separatrix.elongation_upper

FLT_0D (uncertain)

-

Elongation (upper half w.r.t. geometric axis) of the plasma boundary

equilibrium.time_slice[:].boundary_separatrix.gap

[1...N]

STRUCT_ARRAY

Set of gaps, defined by a reference point and a direction.

equilibrium.time_slice[:].boundary_separatrix.gap[:].angle

FLT_0D (uncertain)

rad

Angle measured clockwise from radial cylindrical vector (grad R) to gap vector (pointing away from reference point)

equilibrium.time_slice[:].boundary_separatrix.gap[:].identifier

STR_0D

Identifier of the gap

equilibrium.time_slice[:].boundary_separatrix.gap[:].name

STR_0D

Name of the gap

equilibrium.time_slice[:].boundary_separatrix.gap[:].r

FLT_0D (uncertain)

m

Major radius of the reference point

equilibrium.time_slice[:].boundary_separatrix.gap[:].value

FLT_0D (uncertain)

m

Value of the gap, i.e. distance between the reference point and the separatrix along the gap direction

equilibrium.time_slice[:].boundary_separatrix.gap[:].z

FLT_0D (uncertain)

m

Height of the reference point

equilibrium.time_slice[:].boundary_separatrix.geometric_axis

STRUCTURE

RZ position of the geometric axis (defined as (Rmin+Rmax) / 2 and (Zmin+Zmax) / 2 of the boundary)

equilibrium.time_slice[:].boundary_separatrix.geometric_axis.r

FLT_0D (uncertain)

m

Major radius

equilibrium.time_slice[:].boundary_separatrix.geometric_axis.z

FLT_0D (uncertain)

m

Height

equilibrium.time_slice[:].boundary_separatrix.minor_radius

FLT_0D (uncertain)

m

Minor radius of the plasma boundary (defined as (Rmax-Rmin) / 2 of the boundary)

equilibrium.time_slice[:].boundary_separatrix.outline

STRUCTURE

RZ outline of the plasma boundary

equilibrium.time_slice[:].boundary_separatrix.outline.r

[1...N]

FLT_1D (uncertain)

m

Major radius

equilibrium.time_slice[:].boundary_separatrix.outline.z

[equilibrium.time_slice[:].boundary_separatrix.outline.r]

FLT_1D (uncertain)

m

Height

equilibrium.time_slice[:].boundary_separatrix.psi

FLT_0D (uncertain)

Wb

Value of the poloidal flux at the separatrix

equilibrium.time_slice[:].boundary_separatrix.squareness_lower_inner

(alpha)

FLT_0D (uncertain)

-

Lower inner squareness of the plasma boundary (definition from T. Luce, Plasma Phys. Control. Fusion 55 (2013) 095009)

equilibrium.time_slice[:].boundary_separatrix.squareness_lower_outer

(alpha)

FLT_0D (uncertain)

-

Lower outer squareness of the plasma boundary (definition from T. Luce, Plasma Phys. Control. Fusion 55 (2013) 095009)

equilibrium.time_slice[:].boundary_separatrix.squareness_upper_inner

(alpha)

FLT_0D (uncertain)

-

Upper inner squareness of the plasma boundary (definition from T. Luce, Plasma Phys. Control. Fusion 55 (2013) 095009)

equilibrium.time_slice[:].boundary_separatrix.squareness_upper_outer

(alpha)

FLT_0D (uncertain)

-

Upper outer squareness of the plasma boundary (definition from T. Luce, Plasma Phys. Control. Fusion 55 (2013) 095009)

equilibrium.time_slice[:].boundary_separatrix.strike_point

[1...N]

STRUCT_ARRAY

Array of strike points, for each of them the RZ position is given

equilibrium.time_slice[:].boundary_separatrix.strike_point[:].r

FLT_0D (uncertain)

m

Major radius

equilibrium.time_slice[:].boundary_separatrix.strike_point[:].z

FLT_0D (uncertain)

m

Height

equilibrium.time_slice[:].boundary_separatrix.triangularity

FLT_0D (uncertain)

-

Triangularity of the plasma boundary

equilibrium.time_slice[:].boundary_separatrix.triangularity_inner

FLT_0D (uncertain)

-

Inner triangularity of the plasma boundary

equilibrium.time_slice[:].boundary_separatrix.triangularity_lower

FLT_0D (uncertain)

-

Lower triangularity of the plasma boundary

equilibrium.time_slice[:].boundary_separatrix.triangularity_minor

FLT_0D (uncertain)

-

Minor triangularity of the plasma boundary

equilibrium.time_slice[:].boundary_separatrix.triangularity_outer

FLT_0D (uncertain)

-

Outer triangularity of the plasma boundary

equilibrium.time_slice[:].boundary_separatrix.triangularity_upper

FLT_0D (uncertain)

-

Upper triangularity of the plasma boundary

equilibrium.time_slice[:].boundary_separatrix.type

INT_0D

0 (limiter) or 1 (diverted)

equilibrium.time_slice[:].boundary_separatrix.x_point

[1...N]

STRUCT_ARRAY

Array of X-points, for each of them the RZ position is given

equilibrium.time_slice[:].boundary_separatrix.x_point[:].r

FLT_0D (uncertain)

m

Major radius

equilibrium.time_slice[:].boundary_separatrix.x_point[:].z

FLT_0D (uncertain)

m

Height

equilibrium.time_slice[:].constraints

(alpha)

STRUCTURE

In case of equilibrium reconstruction under constraints, measurements used to constrain the equilibrium, reconstructed values and accuracy of the fit. The names of the child nodes correspond to the following definition: the solver aims at minimizing a cost function defined as : J=1/2*sum_i [ weight_i^2 (reconstructed_i - measured_i)^2 / sigma_i^2 ]. in which sigma_i is the standard deviation of the measurement error (to be found in the IDS of the measurement)

equilibrium.time_slice[:].constraints.b_field_tor_vacuum_r

(alpha)

STRUCTURE

T.m

Vacuum field times major radius in the toroidal field magnet. Positive sign means anti-clockwise when viewed from above

equilibrium.time_slice[:].constraints.b_field_tor_vacuum_r.chi_squared

(alpha)

FLT_0D (uncertain)

-

Squared error normalized by the variance considered in the minimization process : chi_squared = weight^2 *(reconstructed - measured)^2 / sigma^2, where sigma is the standard deviation of the measurement error

equilibrium.time_slice[:].constraints.b_field_tor_vacuum_r.exact

(alpha)

INT_0D

Integer flag : 1 means exact data, taken as an exact input without being fitted; 0 means the equilibrium code does a least square fit

equilibrium.time_slice[:].constraints.b_field_tor_vacuum_r.measured

(alpha)

FLT_0D (uncertain)

T.m

Measured value

equilibrium.time_slice[:].constraints.b_field_tor_vacuum_r.reconstructed

(alpha)

FLT_0D (uncertain)

T.m

Value calculated from the reconstructed equilibrium

equilibrium.time_slice[:].constraints.b_field_tor_vacuum_r.source

(alpha)

STR_0D

Path to the source data for this measurement in the IMAS data dictionary

equilibrium.time_slice[:].constraints.b_field_tor_vacuum_r.time_measurement

(alpha)

FLT_0D (uncertain)

s

Exact time slice used from the time array of the measurement source data. If the time slice does not exist in the time array of the source data, it means linear interpolation has been used

equilibrium.time_slice[:].constraints.b_field_tor_vacuum_r.weight

(alpha)

FLT_0D (uncertain)

-

Weight given to the measurement

equilibrium.time_slice[:].constraints.bpol_probe

(alpha)

[magnetics.bpol_probe]

STRUCT_ARRAY

T

Set of poloidal field probes

equilibrium.time_slice[:].constraints.bpol_probe[:].chi_squared

(alpha)

FLT_0D (uncertain)

-

Squared error normalized by the variance considered in the minimization process : chi_squared = weight^2 *(reconstructed - measured)^2 / sigma^2, where sigma is the standard deviation of the measurement error

equilibrium.time_slice[:].constraints.bpol_probe[:].exact

(alpha)

INT_0D

Integer flag : 1 means exact data, taken as an exact input without being fitted; 0 means the equilibrium code does a least square fit

equilibrium.time_slice[:].constraints.bpol_probe[:].measured

(alpha)

FLT_0D (uncertain)

T

Measured value

equilibrium.time_slice[:].constraints.bpol_probe[:].reconstructed

(alpha)

FLT_0D (uncertain)

T

Value calculated from the reconstructed equilibrium

equilibrium.time_slice[:].constraints.bpol_probe[:].source

(alpha)

STR_0D

Path to the source data for this measurement in the IMAS data dictionary

equilibrium.time_slice[:].constraints.bpol_probe[:].time_measurement

(alpha)

FLT_0D (uncertain)

s

Exact time slice used from the time array of the measurement source data. If the time slice does not exist in the time array of the source data, it means linear interpolation has been used

equilibrium.time_slice[:].constraints.bpol_probe[:].weight

(alpha)

FLT_0D (uncertain)

-

Weight given to the measurement

equilibrium.time_slice[:].constraints.chi_squared_reduced

(alpha)

FLT_0D (uncertain)

-

Sum of the chi_squared of all constraints used for the equilibrium reconstruction, divided by the number of degrees of freedom of the identification model

equilibrium.time_slice[:].constraints.constraints_n

(alpha)

INT_0D

Number of constraints used (i.e. having a non-zero weight)

equilibrium.time_slice[:].constraints.diamagnetic_flux

(alpha)

STRUCTURE

Wb

Diamagnetic flux

equilibrium.time_slice[:].constraints.diamagnetic_flux.chi_squared

(alpha)

FLT_0D (uncertain)

-

Squared error normalized by the variance considered in the minimization process : chi_squared = weight^2 *(reconstructed - measured)^2 / sigma^2, where sigma is the standard deviation of the measurement error

equilibrium.time_slice[:].constraints.diamagnetic_flux.exact

(alpha)

INT_0D

Integer flag : 1 means exact data, taken as an exact input without being fitted; 0 means the equilibrium code does a least square fit

equilibrium.time_slice[:].constraints.diamagnetic_flux.measured

(alpha)

FLT_0D (uncertain)

Wb

Measured value

equilibrium.time_slice[:].constraints.diamagnetic_flux.reconstructed

(alpha)

FLT_0D (uncertain)

Wb

Value calculated from the reconstructed equilibrium

equilibrium.time_slice[:].constraints.diamagnetic_flux.source

(alpha)

STR_0D

Path to the source data for this measurement in the IMAS data dictionary

equilibrium.time_slice[:].constraints.diamagnetic_flux.time_measurement

(alpha)

FLT_0D (uncertain)

s

Exact time slice used from the time array of the measurement source data. If the time slice does not exist in the time array of the source data, it means linear interpolation has been used

equilibrium.time_slice[:].constraints.diamagnetic_flux.weight

(alpha)

FLT_0D (uncertain)

-

Weight given to the measurement

equilibrium.time_slice[:].constraints.faraday_angle

(alpha)

[polarimeter.channel]

STRUCT_ARRAY

rad

Set of faraday angles

equilibrium.time_slice[:].constraints.faraday_angle[:].chi_squared

(alpha)

FLT_0D (uncertain)

-

Squared error normalized by the variance considered in the minimization process : chi_squared = weight^2 *(reconstructed - measured)^2 / sigma^2, where sigma is the standard deviation of the measurement error

equilibrium.time_slice[:].constraints.faraday_angle[:].exact

(alpha)

INT_0D

Integer flag : 1 means exact data, taken as an exact input without being fitted; 0 means the equilibrium code does a least square fit

equilibrium.time_slice[:].constraints.faraday_angle[:].measured

(alpha)

FLT_0D (uncertain)

rad

Measured value

equilibrium.time_slice[:].constraints.faraday_angle[:].reconstructed

(alpha)

FLT_0D (uncertain)

rad

Value calculated from the reconstructed equilibrium

equilibrium.time_slice[:].constraints.faraday_angle[:].source

(alpha)

STR_0D

Path to the source data for this measurement in the IMAS data dictionary

equilibrium.time_slice[:].constraints.faraday_angle[:].time_measurement

(alpha)

FLT_0D (uncertain)

s

Exact time slice used from the time array of the measurement source data. If the time slice does not exist in the time array of the source data, it means linear interpolation has been used

equilibrium.time_slice[:].constraints.faraday_angle[:].weight

(alpha)

FLT_0D (uncertain)

-

Weight given to the measurement

equilibrium.time_slice[:].constraints.flux_loop

(alpha)

[magnetics.flux_loop]

STRUCT_ARRAY

Wb

Set of flux loops

equilibrium.time_slice[:].constraints.flux_loop[:].chi_squared

(alpha)

FLT_0D (uncertain)

-

Squared error normalized by the variance considered in the minimization process : chi_squared = weight^2 *(reconstructed - measured)^2 / sigma^2, where sigma is the standard deviation of the measurement error

equilibrium.time_slice[:].constraints.flux_loop[:].exact

(alpha)

INT_0D

Integer flag : 1 means exact data, taken as an exact input without being fitted; 0 means the equilibrium code does a least square fit

equilibrium.time_slice[:].constraints.flux_loop[:].measured

(alpha)

FLT_0D (uncertain)

Wb

Measured value

equilibrium.time_slice[:].constraints.flux_loop[:].reconstructed

(alpha)

FLT_0D (uncertain)

Wb

Value calculated from the reconstructed equilibrium

equilibrium.time_slice[:].constraints.flux_loop[:].source

(alpha)

STR_0D

Path to the source data for this measurement in the IMAS data dictionary

equilibrium.time_slice[:].constraints.flux_loop[:].time_measurement

(alpha)

FLT_0D (uncertain)

s

Exact time slice used from the time array of the measurement source data. If the time slice does not exist in the time array of the source data, it means linear interpolation has been used

equilibrium.time_slice[:].constraints.flux_loop[:].weight

(alpha)

FLT_0D (uncertain)

-

Weight given to the measurement

equilibrium.time_slice[:].constraints.freedom_degrees_n

(alpha)

INT_0D

Number of degrees of freedom of the identification model

equilibrium.time_slice[:].constraints.ip

(alpha)

STRUCTURE

A

Plasma current. Positive sign means anti-clockwise when viewed from above

equilibrium.time_slice[:].constraints.ip.chi_squared

(alpha)

FLT_0D (uncertain)

-

Squared error normalized by the variance considered in the minimization process : chi_squared = weight^2 *(reconstructed - measured)^2 / sigma^2, where sigma is the standard deviation of the measurement error

equilibrium.time_slice[:].constraints.ip.exact

(alpha)

INT_0D

Integer flag : 1 means exact data, taken as an exact input without being fitted; 0 means the equilibrium code does a least square fit

equilibrium.time_slice[:].constraints.ip.measured

(alpha)

FLT_0D (uncertain)

A

Measured value

equilibrium.time_slice[:].constraints.ip.reconstructed

(alpha)

FLT_0D (uncertain)

A

Value calculated from the reconstructed equilibrium

equilibrium.time_slice[:].constraints.ip.source

(alpha)

STR_0D

Path to the source data for this measurement in the IMAS data dictionary

equilibrium.time_slice[:].constraints.ip.time_measurement

(alpha)

FLT_0D (uncertain)

s

Exact time slice used from the time array of the measurement source data. If the time slice does not exist in the time array of the source data, it means linear interpolation has been used

equilibrium.time_slice[:].constraints.ip.weight

(alpha)

FLT_0D (uncertain)

-

Weight given to the measurement

equilibrium.time_slice[:].constraints.iron_core_segment

(alpha)

[iron_core.segment]

STRUCT_ARRAY

T

Magnetisation M of a set of iron core segments

equilibrium.time_slice[:].constraints.iron_core_segment[:].magnetisation_r

(alpha)

STRUCTURE

T

Magnetisation M of the iron core segment along the major radius axis, assumed to be constant inside a given iron segment. Reminder : H = 1/mu0 * B - mur * M;

equilibrium.time_slice[:].constraints.iron_core_segment[:].magnetisation_r.chi_squared

(alpha)

FLT_0D (uncertain)

-

Squared error normalized by the variance considered in the minimization process : chi_squared = weight^2 *(reconstructed - measured)^2 / sigma^2, where sigma is the standard deviation of the measurement error

equilibrium.time_slice[:].constraints.iron_core_segment[:].magnetisation_r.exact

(alpha)

INT_0D

Integer flag : 1 means exact data, taken as an exact input without being fitted; 0 means the equilibrium code does a least square fit

equilibrium.time_slice[:].constraints.iron_core_segment[:].magnetisation_r.measured

(alpha)

FLT_0D (uncertain)

T

Measured value

equilibrium.time_slice[:].constraints.iron_core_segment[:].magnetisation_r.reconstructed

(alpha)

FLT_0D (uncertain)

T

Value calculated from the reconstructed equilibrium

equilibrium.time_slice[:].constraints.iron_core_segment[:].magnetisation_r.source

(alpha)

STR_0D

Path to the source data for this measurement in the IMAS data dictionary

equilibrium.time_slice[:].constraints.iron_core_segment[:].magnetisation_r.time_measurement

(alpha)

FLT_0D (uncertain)

s

Exact time slice used from the time array of the measurement source data. If the time slice does not exist in the time array of the source data, it means linear interpolation has been used

equilibrium.time_slice[:].constraints.iron_core_segment[:].magnetisation_r.weight

(alpha)

FLT_0D (uncertain)

-

Weight given to the measurement

equilibrium.time_slice[:].constraints.iron_core_segment[:].magnetisation_z

(alpha)

STRUCTURE

T

Magnetisation M of the iron core segment along the vertical axis, assumed to be constant inside a given iron segment. Reminder : H = 1/mu0 * B - mur * M;

equilibrium.time_slice[:].constraints.iron_core_segment[:].magnetisation_z.chi_squared

(alpha)

FLT_0D (uncertain)

-

Squared error normalized by the variance considered in the minimization process : chi_squared = weight^2 *(reconstructed - measured)^2 / sigma^2, where sigma is the standard deviation of the measurement error

equilibrium.time_slice[:].constraints.iron_core_segment[:].magnetisation_z.exact

(alpha)

INT_0D

Integer flag : 1 means exact data, taken as an exact input without being fitted; 0 means the equilibrium code does a least square fit

equilibrium.time_slice[:].constraints.iron_core_segment[:].magnetisation_z.measured

(alpha)

FLT_0D (uncertain)

T

Measured value

equilibrium.time_slice[:].constraints.iron_core_segment[:].magnetisation_z.reconstructed

(alpha)

FLT_0D (uncertain)

T

Value calculated from the reconstructed equilibrium

equilibrium.time_slice[:].constraints.iron_core_segment[:].magnetisation_z.source

(alpha)

STR_0D

Path to the source data for this measurement in the IMAS data dictionary

equilibrium.time_slice[:].constraints.iron_core_segment[:].magnetisation_z.time_measurement

(alpha)

FLT_0D (uncertain)

s

Exact time slice used from the time array of the measurement source data. If the time slice does not exist in the time array of the source data, it means linear interpolation has been used

equilibrium.time_slice[:].constraints.iron_core_segment[:].magnetisation_z.weight

(alpha)

FLT_0D (uncertain)

-

Weight given to the measurement

equilibrium.time_slice[:].constraints.j_parallel

(alpha)

[1...N]

STRUCT_ARRAY

A.m^-2

Set of flux-surface averaged parallel current density approximations at various positions (= average(j.B) / B0, where B0 = /vacuum_toroidal_field/b0)

equilibrium.time_slice[:].constraints.j_parallel[:].chi_squared

(alpha)

FLT_0D (uncertain)

A.m^-2

Squared error normalized by the variance considered in the minimization process : chi_squared = weight^2 *(reconstructed - measured)^2 / sigma^2, where sigma is the standard deviation of the measurement error

equilibrium.time_slice[:].constraints.j_parallel[:].exact

(alpha)

INT_0D

Integer flag : 1 means exact data, taken as an exact input without being fitted; 0 means the equilibrium code does a least square fit

equilibrium.time_slice[:].constraints.j_parallel[:].measured

(alpha)

FLT_0D (uncertain)

A.m^-2

Measured value

equilibrium.time_slice[:].constraints.j_parallel[:].position

(alpha)

STRUCTURE

Position at which this measurement is given

equilibrium.time_slice[:].constraints.j_parallel[:].position.phi

(alpha)

FLT_0D (uncertain)

rad

Toroidal angle (oriented counter-clockwise when viewing from above)

equilibrium.time_slice[:].constraints.j_parallel[:].position.psi

(alpha)

FLT_0D (uncertain)

Wb

Poloidal magnetic flux

equilibrium.time_slice[:].constraints.j_parallel[:].position.r

(alpha)

FLT_0D (uncertain)

m

Major radius

equilibrium.time_slice[:].constraints.j_parallel[:].position.rho_tor_norm

(alpha)

FLT_0D (uncertain)

-

Normalised toroidal flux coordinate. The normalizing value for rho_tor_norm, is the toroidal flux coordinate at the equilibrium boundary (LCFS or 99.x % of the LCFS in case of a fixed boundary equilibium calculation, see time_slice/boundary/b_flux_pol_norm in the equilibrium IDS)

equilibrium.time_slice[:].constraints.j_parallel[:].position.z

(alpha)

FLT_0D (uncertain)

m

Height

equilibrium.time_slice[:].constraints.j_parallel[:].reconstructed

(alpha)

FLT_0D (uncertain)

-

Value calculated from the reconstructed equilibrium

equilibrium.time_slice[:].constraints.j_parallel[:].source

(alpha)

STR_0D

Path to the source data for this measurement in the IMAS data dictionary

equilibrium.time_slice[:].constraints.j_parallel[:].time_measurement

(alpha)

FLT_0D (uncertain)

s

Exact time slice used from the time array of the measurement source data. If the time slice does not exist in the time array of the source data, it means linear interpolation has been used

equilibrium.time_slice[:].constraints.j_parallel[:].weight

(alpha)

FLT_0D (uncertain)

-

Weight given to the measurement

equilibrium.time_slice[:].constraints.j_tor

(alpha)

[1...N]

STRUCT_ARRAY

A.m^-2

Set of flux-surface averaged toroidal current density approximations at various positions (= average(j_tor/R) / average(1/R))

equilibrium.time_slice[:].constraints.j_tor[:].chi_squared

(alpha)

FLT_0D (uncertain)

A.m^-2

Squared error normalized by the variance considered in the minimization process : chi_squared = weight^2 *(reconstructed - measured)^2 / sigma^2, where sigma is the standard deviation of the measurement error

equilibrium.time_slice[:].constraints.j_tor[:].exact

(alpha)

INT_0D

Integer flag : 1 means exact data, taken as an exact input without being fitted; 0 means the equilibrium code does a least square fit

equilibrium.time_slice[:].constraints.j_tor[:].measured

(alpha)

FLT_0D (uncertain)

A.m^-2

Measured value

equilibrium.time_slice[:].constraints.j_tor[:].position

(alpha)

STRUCTURE

Position at which this measurement is given

equilibrium.time_slice[:].constraints.j_tor[:].position.phi

(alpha)

FLT_0D (uncertain)

rad

Toroidal angle (oriented counter-clockwise when viewing from above)

equilibrium.time_slice[:].constraints.j_tor[:].position.psi

(alpha)

FLT_0D (uncertain)

Wb

Poloidal magnetic flux

equilibrium.time_slice[:].constraints.j_tor[:].position.r

(alpha)

FLT_0D (uncertain)

m

Major radius

equilibrium.time_slice[:].constraints.j_tor[:].position.rho_tor_norm

(alpha)

FLT_0D (uncertain)

-

Normalised toroidal flux coordinate. The normalizing value for rho_tor_norm, is the toroidal flux coordinate at the equilibrium boundary (LCFS or 99.x % of the LCFS in case of a fixed boundary equilibium calculation, see time_slice/boundary/b_flux_pol_norm in the equilibrium IDS)

equilibrium.time_slice[:].constraints.j_tor[:].position.z

(alpha)

FLT_0D (uncertain)

m

Height

equilibrium.time_slice[:].constraints.j_tor[:].reconstructed

(alpha)

FLT_0D (uncertain)

-

Value calculated from the reconstructed equilibrium

equilibrium.time_slice[:].constraints.j_tor[:].source

(alpha)

STR_0D

Path to the source data for this measurement in the IMAS data dictionary

equilibrium.time_slice[:].constraints.j_tor[:].time_measurement

(alpha)

FLT_0D (uncertain)

s

Exact time slice used from the time array of the measurement source data. If the time slice does not exist in the time array of the source data, it means linear interpolation has been used

equilibrium.time_slice[:].constraints.j_tor[:].weight

(alpha)

FLT_0D (uncertain)

-

Weight given to the measurement

equilibrium.time_slice[:].constraints.mse_polarisation_angle

(alpha)

[mse.channel]

STRUCT_ARRAY

rad

Set of MSE polarisation angles

equilibrium.time_slice[:].constraints.mse_polarisation_angle[:].chi_squared

(alpha)

FLT_0D (uncertain)

-

Squared error normalized by the variance considered in the minimization process : chi_squared = weight^2 *(reconstructed - measured)^2 / sigma^2, where sigma is the standard deviation of the measurement error

equilibrium.time_slice[:].constraints.mse_polarisation_angle[:].exact

(alpha)

INT_0D

Integer flag : 1 means exact data, taken as an exact input without being fitted; 0 means the equilibrium code does a least square fit

equilibrium.time_slice[:].constraints.mse_polarisation_angle[:].measured

(alpha)

FLT_0D (uncertain)

rad

Measured value

equilibrium.time_slice[:].constraints.mse_polarisation_angle[:].reconstructed

(alpha)

FLT_0D (uncertain)

rad

Value calculated from the reconstructed equilibrium

equilibrium.time_slice[:].constraints.mse_polarisation_angle[:].source

(alpha)

STR_0D

Path to the source data for this measurement in the IMAS data dictionary

equilibrium.time_slice[:].constraints.mse_polarisation_angle[:].time_measurement

(alpha)

FLT_0D (uncertain)

s

Exact time slice used from the time array of the measurement source data. If the time slice does not exist in the time array of the source data, it means linear interpolation has been used

equilibrium.time_slice[:].constraints.mse_polarisation_angle[:].weight

(alpha)

FLT_0D (uncertain)

-

Weight given to the measurement

equilibrium.time_slice[:].constraints.n_e

(alpha)

[1...N]

STRUCT_ARRAY

m^-3

Set of local density measurements

equilibrium.time_slice[:].constraints.n_e[:].chi_squared

(alpha)

FLT_0D (uncertain)

m^-3

Squared error normalized by the variance considered in the minimization process : chi_squared = weight^2 *(reconstructed - measured)^2 / sigma^2, where sigma is the standard deviation of the measurement error

equilibrium.time_slice[:].constraints.n_e[:].exact

(alpha)

INT_0D

Integer flag : 1 means exact data, taken as an exact input without being fitted; 0 means the equilibrium code does a least square fit

equilibrium.time_slice[:].constraints.n_e[:].measured

(alpha)

FLT_0D (uncertain)

m^-3

Measured value

equilibrium.time_slice[:].constraints.n_e[:].position

(alpha)

STRUCTURE

Position at which this measurement is given

equilibrium.time_slice[:].constraints.n_e[:].position.phi

(alpha)

FLT_0D (uncertain)

rad

Toroidal angle (oriented counter-clockwise when viewing from above)

equilibrium.time_slice[:].constraints.n_e[:].position.psi

(alpha)

FLT_0D (uncertain)

Wb

Poloidal magnetic flux

equilibrium.time_slice[:].constraints.n_e[:].position.r

(alpha)

FLT_0D (uncertain)

m

Major radius

equilibrium.time_slice[:].constraints.n_e[:].position.rho_tor_norm

(alpha)

FLT_0D (uncertain)

-

Normalised toroidal flux coordinate. The normalizing value for rho_tor_norm, is the toroidal flux coordinate at the equilibrium boundary (LCFS or 99.x % of the LCFS in case of a fixed boundary equilibium calculation, see time_slice/boundary/b_flux_pol_norm in the equilibrium IDS)

equilibrium.time_slice[:].constraints.n_e[:].position.z

(alpha)

FLT_0D (uncertain)

m

Height

equilibrium.time_slice[:].constraints.n_e[:].reconstructed

(alpha)

FLT_0D (uncertain)

-

Value calculated from the reconstructed equilibrium

equilibrium.time_slice[:].constraints.n_e[:].source

(alpha)

STR_0D

Path to the source data for this measurement in the IMAS data dictionary

equilibrium.time_slice[:].constraints.n_e[:].time_measurement

(alpha)

FLT_0D (uncertain)

s

Exact time slice used from the time array of the measurement source data. If the time slice does not exist in the time array of the source data, it means linear interpolation has been used

equilibrium.time_slice[:].constraints.n_e[:].weight

(alpha)

FLT_0D (uncertain)

-

Weight given to the measurement

equilibrium.time_slice[:].constraints.n_e_line

(alpha)

[interferometer.channel]

STRUCT_ARRAY

m^-2

Set of line integrated density measurements

equilibrium.time_slice[:].constraints.n_e_line[:].chi_squared

(alpha)

FLT_0D (uncertain)

-

Squared error normalized by the variance considered in the minimization process : chi_squared = weight^2 *(reconstructed - measured)^2 / sigma^2, where sigma is the standard deviation of the measurement error

equilibrium.time_slice[:].constraints.n_e_line[:].exact

(alpha)

INT_0D

Integer flag : 1 means exact data, taken as an exact input without being fitted; 0 means the equilibrium code does a least square fit

equilibrium.time_slice[:].constraints.n_e_line[:].measured

(alpha)

FLT_0D (uncertain)

m^-2

Measured value

equilibrium.time_slice[:].constraints.n_e_line[:].reconstructed

(alpha)

FLT_0D (uncertain)

m^-2

Value calculated from the reconstructed equilibrium

equilibrium.time_slice[:].constraints.n_e_line[:].source

(alpha)

STR_0D

Path to the source data for this measurement in the IMAS data dictionary

equilibrium.time_slice[:].constraints.n_e_line[:].time_measurement

(alpha)

FLT_0D (uncertain)

s

Exact time slice used from the time array of the measurement source data. If the time slice does not exist in the time array of the source data, it means linear interpolation has been used

equilibrium.time_slice[:].constraints.n_e_line[:].weight

(alpha)

FLT_0D (uncertain)

-

Weight given to the measurement

equilibrium.time_slice[:].constraints.pf_current

(alpha)

[pf_active.coil]

STRUCT_ARRAY

A

Current in a set of poloidal field coils

equilibrium.time_slice[:].constraints.pf_current[:].chi_squared

(alpha)

FLT_0D (uncertain)

-

Squared error normalized by the variance considered in the minimization process : chi_squared = weight^2 *(reconstructed - measured)^2 / sigma^2, where sigma is the standard deviation of the measurement error

equilibrium.time_slice[:].constraints.pf_current[:].exact

(alpha)

INT_0D

Integer flag : 1 means exact data, taken as an exact input without being fitted; 0 means the equilibrium code does a least square fit

equilibrium.time_slice[:].constraints.pf_current[:].measured

(alpha)

FLT_0D (uncertain)

A

Measured value

equilibrium.time_slice[:].constraints.pf_current[:].reconstructed

(alpha)

FLT_0D (uncertain)

A

Value calculated from the reconstructed equilibrium

equilibrium.time_slice[:].constraints.pf_current[:].source

(alpha)

STR_0D

Path to the source data for this measurement in the IMAS data dictionary

equilibrium.time_slice[:].constraints.pf_current[:].time_measurement

(alpha)

FLT_0D (uncertain)

s

Exact time slice used from the time array of the measurement source data. If the time slice does not exist in the time array of the source data, it means linear interpolation has been used

equilibrium.time_slice[:].constraints.pf_current[:].weight

(alpha)

FLT_0D (uncertain)

-

Weight given to the measurement

equilibrium.time_slice[:].constraints.pf_passive_current

(alpha)

[pf_passive.loop]

STRUCT_ARRAY

A

Current in a set of axisymmetric passive conductors

equilibrium.time_slice[:].constraints.pf_passive_current[:].chi_squared

(alpha)

FLT_0D (uncertain)

-

Squared error normalized by the variance considered in the minimization process : chi_squared = weight^2 *(reconstructed - measured)^2 / sigma^2, where sigma is the standard deviation of the measurement error

equilibrium.time_slice[:].constraints.pf_passive_current[:].exact

(alpha)

INT_0D

Integer flag : 1 means exact data, taken as an exact input without being fitted; 0 means the equilibrium code does a least square fit

equilibrium.time_slice[:].constraints.pf_passive_current[:].measured

(alpha)

FLT_0D (uncertain)

A

Measured value

equilibrium.time_slice[:].constraints.pf_passive_current[:].reconstructed

(alpha)

FLT_0D (uncertain)

A

Value calculated from the reconstructed equilibrium

equilibrium.time_slice[:].constraints.pf_passive_current[:].source

(alpha)

STR_0D

Path to the source data for this measurement in the IMAS data dictionary

equilibrium.time_slice[:].constraints.pf_passive_current[:].time_measurement

(alpha)

FLT_0D (uncertain)

s

Exact time slice used from the time array of the measurement source data. If the time slice does not exist in the time array of the source data, it means linear interpolation has been used

equilibrium.time_slice[:].constraints.pf_passive_current[:].weight

(alpha)

FLT_0D (uncertain)

-

Weight given to the measurement

equilibrium.time_slice[:].constraints.pressure

(alpha)

[1...N]

STRUCT_ARRAY

Pa

Set of total pressure estimates

equilibrium.time_slice[:].constraints.pressure[:].chi_squared

(alpha)

FLT_0D (uncertain)

Pa

Squared error normalized by the variance considered in the minimization process : chi_squared = weight^2 *(reconstructed - measured)^2 / sigma^2, where sigma is the standard deviation of the measurement error

equilibrium.time_slice[:].constraints.pressure[:].exact

(alpha)

INT_0D

Integer flag : 1 means exact data, taken as an exact input without being fitted; 0 means the equilibrium code does a least square fit

equilibrium.time_slice[:].constraints.pressure[:].measured

(alpha)

FLT_0D (uncertain)

Pa

Measured value

equilibrium.time_slice[:].constraints.pressure[:].position

(alpha)

STRUCTURE

Position at which this measurement is given

equilibrium.time_slice[:].constraints.pressure[:].position.phi

(alpha)

FLT_0D (uncertain)

rad

Toroidal angle (oriented counter-clockwise when viewing from above)

equilibrium.time_slice[:].constraints.pressure[:].position.psi

(alpha)

FLT_0D (uncertain)

Wb

Poloidal magnetic flux

equilibrium.time_slice[:].constraints.pressure[:].position.r

(alpha)

FLT_0D (uncertain)

m

Major radius

equilibrium.time_slice[:].constraints.pressure[:].position.rho_tor_norm

(alpha)

FLT_0D (uncertain)

-

Normalised toroidal flux coordinate. The normalizing value for rho_tor_norm, is the toroidal flux coordinate at the equilibrium boundary (LCFS or 99.x % of the LCFS in case of a fixed boundary equilibium calculation, see time_slice/boundary/b_flux_pol_norm in the equilibrium IDS)

equilibrium.time_slice[:].constraints.pressure[:].position.z

(alpha)

FLT_0D (uncertain)

m

Height

equilibrium.time_slice[:].constraints.pressure[:].reconstructed

(alpha)

FLT_0D (uncertain)

-

Value calculated from the reconstructed equilibrium

equilibrium.time_slice[:].constraints.pressure[:].source

(alpha)

STR_0D

Path to the source data for this measurement in the IMAS data dictionary

equilibrium.time_slice[:].constraints.pressure[:].time_measurement

(alpha)

FLT_0D (uncertain)

s

Exact time slice used from the time array of the measurement source data. If the time slice does not exist in the time array of the source data, it means linear interpolation has been used

equilibrium.time_slice[:].constraints.pressure[:].weight

(alpha)

FLT_0D (uncertain)

-

Weight given to the measurement

equilibrium.time_slice[:].constraints.pressure_rotational

(alpha)

[1...N]

STRUCT_ARRAY

Pa

Set of rotational pressure estimates. The rotational pressure is defined as R0^2*rho*omega^2 / 2, where omega is the toroidal rotation frequency, rho=ne(R0,psi)*m, and m is the plasma equivalent mass.

equilibrium.time_slice[:].constraints.pressure_rotational[:].chi_squared

(alpha)

FLT_0D (uncertain)

Pa

Squared error normalized by the variance considered in the minimization process : chi_squared = weight^2 *(reconstructed - measured)^2 / sigma^2, where sigma is the standard deviation of the measurement error

equilibrium.time_slice[:].constraints.pressure_rotational[:].exact

(alpha)

INT_0D

Integer flag : 1 means exact data, taken as an exact input without being fitted; 0 means the equilibrium code does a least square fit

equilibrium.time_slice[:].constraints.pressure_rotational[:].measured

(alpha)

FLT_0D (uncertain)

Pa

Measured value

equilibrium.time_slice[:].constraints.pressure_rotational[:].position

(alpha)

STRUCTURE

Position at which this measurement is given

equilibrium.time_slice[:].constraints.pressure_rotational[:].position.phi

(alpha)

FLT_0D (uncertain)

rad

Toroidal angle (oriented counter-clockwise when viewing from above)

equilibrium.time_slice[:].constraints.pressure_rotational[:].position.psi

(alpha)

FLT_0D (uncertain)

Wb

Poloidal magnetic flux

equilibrium.time_slice[:].constraints.pressure_rotational[:].position.r

(alpha)

FLT_0D (uncertain)

m

Major radius

equilibrium.time_slice[:].constraints.pressure_rotational[:].position.rho_tor_norm

(alpha)

FLT_0D (uncertain)

-

Normalised toroidal flux coordinate. The normalizing value for rho_tor_norm, is the toroidal flux coordinate at the equilibrium boundary (LCFS or 99.x % of the LCFS in case of a fixed boundary equilibium calculation, see time_slice/boundary/b_flux_pol_norm in the equilibrium IDS)

equilibrium.time_slice[:].constraints.pressure_rotational[:].position.z

(alpha)

FLT_0D (uncertain)

m

Height

equilibrium.time_slice[:].constraints.pressure_rotational[:].reconstructed

(alpha)

FLT_0D (uncertain)

-

Value calculated from the reconstructed equilibrium

equilibrium.time_slice[:].constraints.pressure_rotational[:].source

(alpha)

STR_0D

Path to the source data for this measurement in the IMAS data dictionary

equilibrium.time_slice[:].constraints.pressure_rotational[:].time_measurement

(alpha)

FLT_0D (uncertain)

s

Exact time slice used from the time array of the measurement source data. If the time slice does not exist in the time array of the source data, it means linear interpolation has been used

equilibrium.time_slice[:].constraints.pressure_rotational[:].weight

(alpha)

FLT_0D (uncertain)

-

Weight given to the measurement

equilibrium.time_slice[:].constraints.q

(alpha)

[1...N]

STRUCT_ARRAY

-

Set of safety factor estimates at various positions

equilibrium.time_slice[:].constraints.q[:].chi_squared

(alpha)

FLT_0D (uncertain)

-

Squared error normalized by the variance considered in the minimization process : chi_squared = weight^2 *(reconstructed - measured)^2 / sigma^2, where sigma is the standard deviation of the measurement error

equilibrium.time_slice[:].constraints.q[:].exact

(alpha)

INT_0D

Integer flag : 1 means exact data, taken as an exact input without being fitted; 0 means the equilibrium code does a least square fit

equilibrium.time_slice[:].constraints.q[:].measured

(alpha)

FLT_0D (uncertain)

-

Measured value

equilibrium.time_slice[:].constraints.q[:].position

(alpha)

STRUCTURE

Position at which this measurement is given

equilibrium.time_slice[:].constraints.q[:].position.phi

(alpha)

FLT_0D (uncertain)

rad

Toroidal angle (oriented counter-clockwise when viewing from above)

equilibrium.time_slice[:].constraints.q[:].position.psi

(alpha)

FLT_0D (uncertain)

Wb

Poloidal magnetic flux

equilibrium.time_slice[:].constraints.q[:].position.r

(alpha)

FLT_0D (uncertain)

m

Major radius

equilibrium.time_slice[:].constraints.q[:].position.rho_tor_norm

(alpha)

FLT_0D (uncertain)

-

Normalised toroidal flux coordinate. The normalizing value for rho_tor_norm, is the toroidal flux coordinate at the equilibrium boundary (LCFS or 99.x % of the LCFS in case of a fixed boundary equilibium calculation, see time_slice/boundary/b_flux_pol_norm in the equilibrium IDS)

equilibrium.time_slice[:].constraints.q[:].position.z

(alpha)

FLT_0D (uncertain)

m

Height

equilibrium.time_slice[:].constraints.q[:].reconstructed

(alpha)

FLT_0D (uncertain)

-

Value calculated from the reconstructed equilibrium

equilibrium.time_slice[:].constraints.q[:].source

(alpha)

STR_0D

Path to the source data for this measurement in the IMAS data dictionary

equilibrium.time_slice[:].constraints.q[:].time_measurement

(alpha)

FLT_0D (uncertain)

s

Exact time slice used from the time array of the measurement source data. If the time slice does not exist in the time array of the source data, it means linear interpolation has been used

equilibrium.time_slice[:].constraints.q[:].weight

(alpha)

FLT_0D (uncertain)

-

Weight given to the measurement

equilibrium.time_slice[:].constraints.strike_point

(alpha)

[1...N]

STRUCT_ARRAY

Array of strike points, for each of them the RZ position is given

equilibrium.time_slice[:].constraints.strike_point[:].chi_squared_r

(alpha)

FLT_0D (uncertain)

m^-2

Squared error on the major radius normalized by the variance considered in the minimization process : chi_squared = weight^2 *(position_reconstructed/r - position_measured/r)^2 / sigma^2, where sigma is the standard deviation of the measurement error

equilibrium.time_slice[:].constraints.strike_point[:].chi_squared_z

(alpha)

FLT_0D (uncertain)

m^-2

Squared error on the altitude normalized by the variance considered in the minimization process : chi_squared = weight^2 *(position_reconstructed/z - position_measured/z)^2 / sigma^2, where sigma is the standard deviation of the measurement error

equilibrium.time_slice[:].constraints.strike_point[:].exact

(alpha)

INT_0D

Integer flag : 1 means exact data, taken as an exact input without being fitted; 0 means the equilibrium code does a least square fit

equilibrium.time_slice[:].constraints.strike_point[:].position_measured

(alpha)

STRUCTURE

Measured or estimated position

equilibrium.time_slice[:].constraints.strike_point[:].position_measured.r

(alpha)

FLT_0D (uncertain)

m

Major radius

equilibrium.time_slice[:].constraints.strike_point[:].position_measured.z

(alpha)

FLT_0D (uncertain)

m

Height

equilibrium.time_slice[:].constraints.strike_point[:].position_reconstructed

(alpha)

STRUCTURE

Position estimated from the reconstructed equilibrium

equilibrium.time_slice[:].constraints.strike_point[:].position_reconstructed.r

(alpha)

FLT_0D (uncertain)

m

Major radius

equilibrium.time_slice[:].constraints.strike_point[:].position_reconstructed.z

(alpha)

FLT_0D (uncertain)

m

Height

equilibrium.time_slice[:].constraints.strike_point[:].source

(alpha)

STR_0D

Path to the source data for this measurement in the IMAS data dictionary

equilibrium.time_slice[:].constraints.strike_point[:].time_measurement

(alpha)

FLT_0D (uncertain)

s

Exact time slice used from the time array of the measurement source data. If the time slice does not exist in the time array of the source data, it means linear interpolation has been used

equilibrium.time_slice[:].constraints.strike_point[:].weight

(alpha)

FLT_0D (uncertain)

-

Weight given to the measurement

equilibrium.time_slice[:].constraints.x_point

(alpha)

[1...N]

STRUCT_ARRAY

Array of X-points, for each of them the RZ position is given

equilibrium.time_slice[:].constraints.x_point[:].chi_squared_r

(alpha)

FLT_0D (uncertain)

m^-2

Squared error on the major radius normalized by the variance considered in the minimization process : chi_squared = weight^2 *(position_reconstructed/r - position_measured/r)^2 / sigma^2, where sigma is the standard deviation of the measurement error

equilibrium.time_slice[:].constraints.x_point[:].chi_squared_z

(alpha)

FLT_0D (uncertain)

m^-2

Squared error on the altitude normalized by the variance considered in the minimization process : chi_squared = weight^2 *(position_reconstructed/z - position_measured/z)^2 / sigma^2, where sigma is the standard deviation of the measurement error

equilibrium.time_slice[:].constraints.x_point[:].exact

(alpha)

INT_0D

Integer flag : 1 means exact data, taken as an exact input without being fitted; 0 means the equilibrium code does a least square fit

equilibrium.time_slice[:].constraints.x_point[:].position_measured

(alpha)

STRUCTURE

Measured or estimated position

equilibrium.time_slice[:].constraints.x_point[:].position_measured.r

(alpha)

FLT_0D (uncertain)

m

Major radius

equilibrium.time_slice[:].constraints.x_point[:].position_measured.z

(alpha)

FLT_0D (uncertain)

m

Height

equilibrium.time_slice[:].constraints.x_point[:].position_reconstructed

(alpha)

STRUCTURE

Position estimated from the reconstructed equilibrium

equilibrium.time_slice[:].constraints.x_point[:].position_reconstructed.r

(alpha)

FLT_0D (uncertain)

m

Major radius

equilibrium.time_slice[:].constraints.x_point[:].position_reconstructed.z

(alpha)

FLT_0D (uncertain)

m

Height

equilibrium.time_slice[:].constraints.x_point[:].source

(alpha)

STR_0D

Path to the source data for this measurement in the IMAS data dictionary

equilibrium.time_slice[:].constraints.x_point[:].time_measurement

(alpha)

FLT_0D (uncertain)

s

Exact time slice used from the time array of the measurement source data. If the time slice does not exist in the time array of the source data, it means linear interpolation has been used

equilibrium.time_slice[:].constraints.x_point[:].weight

(alpha)

FLT_0D (uncertain)

-

Weight given to the measurement

equilibrium.time_slice[:].convergence

STRUCTURE

Convergence details

equilibrium.time_slice[:].convergence.grad_shafranov_deviation_expression

STRUCTURE

Expression for calculating the residual deviation between the left and right hand side of the Grad Shafranov equation
1) absolute_gs_difference : Average absolute difference of the Grad-Shafranov equation, <|Del* psi - j_tor*R|>, averaged over the plasma poloidal cross-section
2) root_mean_square_gs_difference : Root mean square difference of the Grad-Shafranov equation, sqrt(<(Del* psi - j_tor*R)^2 >), averaged over the plasma poloidal cross-section
3) max_absolute_psi_residual : Maximum absolute difference over the plasma poloidal cross-section of the poloidal flux between the current and preceding iteration, on fixed grid points
4) max_absolute_gs_difference_norm : Maximum absolute difference of the Grad-Shafranov equation, normalised, max(|Del* psi - j_tor*R|) / max(|Del* psi|), over the plasma poloidal cross-section
5) max_root_mean_square_gs_difference_norm : Root maximum square difference of the Grad-Shafranov equation, normalised, sqrt(max((Del* psi - j_tor*R)^2) / max((Del* psi)^2)), over the plasma poloidal cross-section

equilibrium.time_slice[:].convergence.grad_shafranov_deviation_expression.description

STR_0D

Verbose description

equilibrium.time_slice[:].convergence.grad_shafranov_deviation_expression.index

INT_0D

Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index.

equilibrium.time_slice[:].convergence.grad_shafranov_deviation_expression.name

STR_0D

Short string identifier

equilibrium.time_slice[:].convergence.grad_shafranov_deviation_value

FLT_0D (uncertain)

mixed

Value of the residual deviation between the left and right hand side of the Grad Shafranov equation, evaluated as per grad_shafranov_deviation_expression

equilibrium.time_slice[:].convergence.iterations_n

INT_0D

Number of iterations carried out in the convergence loop

equilibrium.time_slice[:].coordinate_system

STRUCTURE

Flux surface coordinate system on a square grid of flux and poloidal angle

equilibrium.time_slice[:].coordinate_system.g11_contravariant

(obsolescent)

[equilibrium.time_slice[:].coordinate_system.grid.dim1,
equilibrium.time_slice[:].coordinate_system.grid.dim2]

FLT_2D (uncertain)

mixed

metric coefficients g11, contravariant metric tensor for the grid described by grid_type

equilibrium.time_slice[:].coordinate_system.g11_covariant

(obsolescent)

[equilibrium.time_slice[:].coordinate_system.grid.dim1,
equilibrium.time_slice[:].coordinate_system.grid.dim2]

FLT_2D (uncertain)

mixed

metric coefficients g11, covariant metric tensor for the grid described by grid_type

equilibrium.time_slice[:].coordinate_system.g12_contravariant

(obsolescent)

[equilibrium.time_slice[:].coordinate_system.grid.dim1,
equilibrium.time_slice[:].coordinate_system.grid.dim2]

FLT_2D (uncertain)

mixed

metric coefficients g12, contravariant metric tensor for the grid described by grid_type

equilibrium.time_slice[:].coordinate_system.g12_covariant

(obsolescent)

[equilibrium.time_slice[:].coordinate_system.grid.dim1,
equilibrium.time_slice[:].coordinate_system.grid.dim2]

FLT_2D (uncertain)

mixed

metric coefficients g12, covariant metric tensor for the grid described by grid_type

equilibrium.time_slice[:].coordinate_system.g13_contravariant

(obsolescent)

[equilibrium.time_slice[:].coordinate_system.grid.dim1,
equilibrium.time_slice[:].coordinate_system.grid.dim2]

FLT_2D (uncertain)

mixed

metric coefficients g13, contravariant metric tensor for the grid described by grid_type

equilibrium.time_slice[:].coordinate_system.g13_covariant

(obsolescent)

[equilibrium.time_slice[:].coordinate_system.grid.dim1,
equilibrium.time_slice[:].coordinate_system.grid.dim2]

FLT_2D (uncertain)

mixed

metric coefficients g13, covariant metric tensor for the grid described by grid_type

equilibrium.time_slice[:].coordinate_system.g22_contravariant

(obsolescent)

[equilibrium.time_slice[:].coordinate_system.grid.dim1,
equilibrium.time_slice[:].coordinate_system.grid.dim2]

FLT_2D (uncertain)

mixed

metric coefficients g22, contravariant metric tensor for the grid described by grid_type

equilibrium.time_slice[:].coordinate_system.g22_covariant

(obsolescent)

[equilibrium.time_slice[:].coordinate_system.grid.dim1,
equilibrium.time_slice[:].coordinate_system.grid.dim2]

FLT_2D (uncertain)

mixed

metric coefficients g22, covariant metric tensor for the grid described by grid_type

equilibrium.time_slice[:].coordinate_system.g23_contravariant

(obsolescent)

[equilibrium.time_slice[:].coordinate_system.grid.dim1,
equilibrium.time_slice[:].coordinate_system.grid.dim2]

FLT_2D (uncertain)

mixed

metric coefficients g23, contravariant metric tensor for the grid described by grid_type

equilibrium.time_slice[:].coordinate_system.g23_covariant

(obsolescent)

[equilibrium.time_slice[:].coordinate_system.grid.dim1,
equilibrium.time_slice[:].coordinate_system.grid.dim2]

FLT_2D (uncertain)

mixed

metric coefficients g23, covariant metric tensor for the grid described by grid_type

equilibrium.time_slice[:].coordinate_system.g33_contravariant

(obsolescent)

[equilibrium.time_slice[:].coordinate_system.grid.dim1,
equilibrium.time_slice[:].coordinate_system.grid.dim2]

FLT_2D (uncertain)

mixed

metric coefficients g33, contravariant metric tensor for the grid described by grid_type

equilibrium.time_slice[:].coordinate_system.g33_covariant

(obsolescent)

[equilibrium.time_slice[:].coordinate_system.grid.dim1,
equilibrium.time_slice[:].coordinate_system.grid.dim2]

FLT_2D (uncertain)

mixed

metric coefficients g33, covariant metric tensor for the grid described by grid_type

equilibrium.time_slice[:].coordinate_system.grid

STRUCTURE

Definition of the 2D grid

equilibrium.time_slice[:].coordinate_system.grid.dim1

[1...N]

FLT_1D (uncertain)

mixed

First dimension values

equilibrium.time_slice[:].coordinate_system.grid.dim2

[1...N]

FLT_1D (uncertain)

mixed

Second dimension values

equilibrium.time_slice[:].coordinate_system.grid.volume_element

[equilibrium.time_slice[:].coordinate_system.grid.dim1,
equilibrium.time_slice[:].coordinate_system.grid.dim2]

FLT_2D (uncertain)

m^3

Elementary plasma volume of plasma enclosed in the cell formed by the nodes [dim1(i) dim2(j)], [dim1(i+1) dim2(j)], [dim1(i) dim2(j+1)] and [dim1(i+1) dim2(j+1)]

equilibrium.time_slice[:].coordinate_system.grid_type

STRUCTURE

Type of coordinate system

equilibrium.time_slice[:].coordinate_system.grid_type.description

STR_0D

Verbose description

equilibrium.time_slice[:].coordinate_system.grid_type.index

INT_0D

Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index.

equilibrium.time_slice[:].coordinate_system.grid_type.name

STR_0D

Short string identifier

equilibrium.time_slice[:].coordinate_system.jacobian

[equilibrium.time_slice[:].coordinate_system.grid.dim1,
equilibrium.time_slice[:].coordinate_system.grid.dim2]

FLT_2D (uncertain)

mixed

Absolute value of the jacobian of the coordinate system

equilibrium.time_slice[:].coordinate_system.r

[equilibrium.time_slice[:].coordinate_system.grid.dim1,
equilibrium.time_slice[:].coordinate_system.grid.dim2]

FLT_2D (uncertain)

m

Values of the major radius on the grid

equilibrium.time_slice[:].coordinate_system.tensor_contravariant

[equilibrium.time_slice[:].coordinate_system.grid.dim1,
equilibrium.time_slice[:].coordinate_system.grid.dim2,
1...3,
1...3]

FLT_4D (uncertain)

mixed

Contravariant metric tensor on every point of the grid described by grid_type

equilibrium.time_slice[:].coordinate_system.tensor_covariant

[equilibrium.time_slice[:].coordinate_system.grid.dim1,
equilibrium.time_slice[:].coordinate_system.grid.dim2,
1...3,
1...3]

FLT_4D (uncertain)

mixed

Covariant metric tensor on every point of the grid described by grid_type

equilibrium.time_slice[:].coordinate_system.z

[equilibrium.time_slice[:].coordinate_system.grid.dim1,
equilibrium.time_slice[:].coordinate_system.grid.dim2]

FLT_2D (uncertain)

m

Values of the Height on the grid

equilibrium.time_slice[:].ggd

(alpha)

[equilibrium.grids_ggd[:].grid]

STRUCT_ARRAY

Set of equilibrium representations using the generic grid description

equilibrium.time_slice[:].ggd[:].b_field_r

(alpha)

[1...N]

STRUCT_ARRAY

T

R component of the poloidal magnetic field, given on various grid subsets

equilibrium.time_slice[:].ggd[:].b_field_r[:].coefficients

(alpha)

[equilibrium.time_slice[:].ggd[:].b_field_r[:].values,
1...N]

FLT_2D (uncertain)

T

Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension).

equilibrium.time_slice[:].ggd[:].b_field_r[:].grid_index

(alpha)

INT_0D

Index of the grid used to represent this quantity

equilibrium.time_slice[:].ggd[:].b_field_r[:].grid_subset_index

(alpha)

INT_0D

Index of the grid subset the data is provided on. Corresponds to the index used in the grid subset definition: grid_subset(:)/identifier/index

equilibrium.time_slice[:].ggd[:].b_field_r[:].values

(alpha)

[1...N]

FLT_1D (uncertain)

T

One scalar value is provided per element in the grid subset.

equilibrium.time_slice[:].ggd[:].b_field_tor

(alpha)

[1...N]

STRUCT_ARRAY

T

Toroidal component of the magnetic field, given on various grid subsets

equilibrium.time_slice[:].ggd[:].b_field_tor[:].coefficients

(alpha)

[equilibrium.time_slice[:].ggd[:].b_field_tor[:].values,
1...N]

FLT_2D (uncertain)

T

Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension).

equilibrium.time_slice[:].ggd[:].b_field_tor[:].grid_index

(alpha)

INT_0D

Index of the grid used to represent this quantity

equilibrium.time_slice[:].ggd[:].b_field_tor[:].grid_subset_index

(alpha)

INT_0D

Index of the grid subset the data is provided on. Corresponds to the index used in the grid subset definition: grid_subset(:)/identifier/index

equilibrium.time_slice[:].ggd[:].b_field_tor[:].values

(alpha)

[1...N]

FLT_1D (uncertain)

T

One scalar value is provided per element in the grid subset.

equilibrium.time_slice[:].ggd[:].b_field_z

(alpha)

[1...N]

STRUCT_ARRAY

T

Z component of the poloidal magnetic field, given on various grid subsets

equilibrium.time_slice[:].ggd[:].b_field_z[:].coefficients

(alpha)

[equilibrium.time_slice[:].ggd[:].b_field_z[:].values,
1...N]

FLT_2D (uncertain)

T

Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension).

equilibrium.time_slice[:].ggd[:].b_field_z[:].grid_index

(alpha)

INT_0D

Index of the grid used to represent this quantity

equilibrium.time_slice[:].ggd[:].b_field_z[:].grid_subset_index

(alpha)

INT_0D

Index of the grid subset the data is provided on. Corresponds to the index used in the grid subset definition: grid_subset(:)/identifier/index

equilibrium.time_slice[:].ggd[:].b_field_z[:].values

(alpha)

[1...N]

FLT_1D (uncertain)

T

One scalar value is provided per element in the grid subset.

equilibrium.time_slice[:].ggd[:].grid

(obsolescent)

STRUCTURE

Grid description

equilibrium.time_slice[:].ggd[:].grid.grid_subset

(obsolescent)

[1...N]

STRUCT_ARRAY

Grid subsets

equilibrium.time_slice[:].ggd[:].grid.grid_subset[:].base

(obsolescent)

[1...N]

STRUCT_ARRAY

Set of bases for the grid subset. For each base, the structure describes the projection of the base vectors on the canonical frame of the grid.

equilibrium.time_slice[:].ggd[:].grid.grid_subset[:].base[:].jacobian

(obsolescent)

[equilibrium.time_slice[:].ggd[:].grid.grid_subset[:].element]

FLT_1D (uncertain)

mixed

Metric Jacobian

equilibrium.time_slice[:].ggd[:].grid.grid_subset[:].base[:].tensor_contravariant

(obsolescent)

[equilibrium.time_slice[:].ggd[:].grid.grid_subset[:].element,
1...N,
1...N]

FLT_3D (uncertain)

mixed

Contravariant metric tensor, given on each element of the subgrid (first dimension)

equilibrium.time_slice[:].ggd[:].grid.grid_subset[:].base[:].tensor_covariant

(obsolescent)

[equilibrium.time_slice[:].ggd[:].grid.grid_subset[:].element,
1...N,
1...N]

FLT_3D (uncertain)

mixed

Covariant metric tensor, given on each element of the subgrid (first dimension)

equilibrium.time_slice[:].ggd[:].grid.grid_subset[:].dimension

(obsolescent)

INT_0D

Space dimension of the grid subset elements. This must be equal to the sum of the dimensions of the individual objects forming the element.

equilibrium.time_slice[:].ggd[:].grid.grid_subset[:].element

(obsolescent)

[1...N]

STRUCT_ARRAY

Set of elements defining the grid subset. An element is defined by a combination of objects from potentially all spaces

equilibrium.time_slice[:].ggd[:].grid.grid_subset[:].element[:].object

(obsolescent)

[1...N]

STRUCT_ARRAY

Set of objects defining the element

equilibrium.time_slice[:].ggd[:].grid.grid_subset[:].element[:].object[:].dimension

(obsolescent)

INT_0D

Dimension of the object

equilibrium.time_slice[:].ggd[:].grid.grid_subset[:].element[:].object[:].index

(obsolescent)

INT_0D

Object index

equilibrium.time_slice[:].ggd[:].grid.grid_subset[:].element[:].object[:].space

(obsolescent)

INT_0D

Index of the space from which that object is taken

equilibrium.time_slice[:].ggd[:].grid.grid_subset[:].identifier

(obsolescent)

STRUCTURE

Grid subset identifier
0) unspecified : unspecified
1) nodes : All nodes (0D) belonging to the associated spaces, implicit declaration (no need to replicate the grid elements in the grid_subset structure). In case of a structured grid represented with multiple 1D spaces, the order of the implicit elements in the grid_subset follows Fortran ordering, i.e. iterate always on nodes of the first space first, then move to the second node of the second space, ... : [((s1_1 to s1_end), s2_1, s3_1 ... sN_1), (((s1_1 to s1_end), s2_2, s3_1, ... sN_1)), ... ((s1_1 to s1_end), s2_end, s3_end ... sN_end)]
200) nodes_combining_spaces : All nodes (0D) belonging to the first space, implicitly extended in other dimensions represented by the other spaces in a structured way. The number of subset elements is thus equal to the number of nodes in the first space. Implicit declaration (no need to replicate the grid elements in the grid_subset structure).
2) edges : All edges (1D) belonging to the associated spaces, implicit declaration (no need to replicate the grid elements in the grid_subset structure)
3) x_aligned_edges : All x-aligned (poloidally) aligned edges belonging to the associated spaces
4) y_aligned_edges : All y-aligned (radially) aligned edges belonging to the associated spaces
5) cells : All cells (2D) belonging to the associated spaces, implicit declaration (no need to replicate the grid elements in the grid_subset structure)
6) x_points : Nodes defining x-points
7) core_cut : y-aligned edges inside the separatrix connecting to the active x-point
8) PFR_cut : y-aligned edges in the private flux region connecting to the active x-point
9) outer_throat : y-aligned edges in the outer SOL connecting to the active x-point
10) inner_throat : y-aligned edges in the inner SOL connecting to the active x-point
11) outer_midplane : y-aligned edges connecting to the node closest to outer midplane on the separatrix
12) inner_midplane : y-aligned edges connecting to the node closest to inner midplane on the separatrix
13) outer_target : y-aligned edges defining the outer target
14) inner_target : y-aligned edges defining the inner target
15) core_boundary : Innermost x-aligned edges
16) separatrix : x-aligned edges defining the active separatrix
17) main_chamber_wall : x-aligned edges defining main chamber wall outside of the divertor regions
18) outer_baffle : x-aligned edges defining the chamber wall of the outer active divertor region
19) inner_baffle : x-aligned edges defining the chamber wall of the inner active divertor region
20) outer_PFR_wall : x-aligned edges defining the private flux region wall of the outer active divertor region
21) inner_PFR_wall : x-aligned edges defining the private flux region wall of the inner active divertor region
22) core : Cells inside the active separatrix
23) sol : Cells defining the main SOL outside of the divertor regions
24) outer_divertor : Cells defining the outer divertor region
25) inner_divertor : Cells defining the inner divertor region
26) core_sol : x-aligned edges defining part of active separatrix separating core and sol
27) full_main_chamber_wall : main_chamber_wall + outer_baffle(s) + inner_baffle(s)
28) full_PFR_wall : outer_PFR__wall(s) + inner_PFR_wall(s)
29) core_cut_X2 : y-aligned edges inside the separatrix connecting to the non-active x-point
30) PFR_cut_X2 : y-aligned edges in the private flux region connecting to the non-active x-point
31) outer_throat_X2 : y-aligned edges in the outer SOL connecting to the non-active x-point
32) inner_throat_X2 : y-aligned edges in the inner SOL connecting to the non-active x-point
33) separatrix_2 : x-aligned edges defining the non-active separatrix
34) outer_baffle_2 : x-aligned edges defining the chamber wall of the outer non-active divertor region
35) inner_baffle_2 : x-aligned edges defining the chamber wall of the inner non-active divertor region
36) outer_PFR_wall_2 : x-aligned edges defining the private flux region wall of the outer non-active divertor region
37) inner_PFR_wall_2 : x-aligned edges defining the private flux region wall of the inner non-active divertor region
38) intra_sep : Cells between the two separatrices
39) outer_divertor_2 : Cells defining the outer inactive divertor region
40) inner_divertor_2 : Cells defining the inner inactive divertor region
41) outer_target_2 : y-aligned edges defining the outer inactive target
42) inner_target_2 : y-aligned edges defining the inner inactive target
43) volumes : All volumes (3D) belonging to the associated spaces, implicit declaration (no need to replicate the grid elements in the grid_subset structure)
44) full_wall : All edges defining walls, baffles, and targets
45) outer_sf_leg_entrance_1 : y-aligned edges defining the SOL entrance of the first snowflake outer leg
46) outer_sf_leg_entrance_2 : y-aligned edges defining the SOL entrance of the third snowflake outer leg
47) outer_sf_pfr_connection_1 : y-aligned edges defining the connection between the outer snowflake entrance and third leg
48) outer_sf_pfr_connection_2 : y-aligned edges defining the connection between the outer snowflake first and second leg
100) magnetic_axis : Point corresponding to the magnetic axis
101) outer_mid_plane_separatrix : Point on active separatrix at outer mid-plane
102) inner_mid_plane_separatrix : Point on active separatrix at inner mid-plane
103) outer_target_separatrix : Point on active separatrix at outer active target
104) inner_target_separatrix : Point on active separatrix at inner active target
105) outer_target_separatrix_2 : Point on non-active separatrix at outer non-active target
106) inner_target_separatrix_2 : Point on non-active separatrix at inner non-active target

equilibrium.time_slice[:].ggd[:].grid.grid_subset[:].identifier.description

(obsolescent)

STR_0D

Verbose description

equilibrium.time_slice[:].ggd[:].grid.grid_subset[:].identifier.index

(obsolescent)

INT_0D

Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index.

equilibrium.time_slice[:].ggd[:].grid.grid_subset[:].identifier.name

(obsolescent)

STR_0D

Short string identifier

equilibrium.time_slice[:].ggd[:].grid.grid_subset[:].metric

(obsolescent)

STRUCTURE

Metric of the canonical frame onto Cartesian coordinates

equilibrium.time_slice[:].ggd[:].grid.grid_subset[:].metric.jacobian

(obsolescent)

[equilibrium.time_slice[:].ggd[:].grid.grid_subset[:].element]

FLT_1D (uncertain)

mixed

Metric Jacobian

equilibrium.time_slice[:].ggd[:].grid.grid_subset[:].metric.tensor_contravariant

(obsolescent)

[equilibrium.time_slice[:].ggd[:].grid.grid_subset[:].element,
1...N,
1...N]

FLT_3D (uncertain)

mixed

Contravariant metric tensor, given on each element of the subgrid (first dimension)

equilibrium.time_slice[:].ggd[:].grid.grid_subset[:].metric.tensor_covariant

(obsolescent)

[equilibrium.time_slice[:].ggd[:].grid.grid_subset[:].element,
1...N,
1...N]

FLT_3D (uncertain)

mixed

Covariant metric tensor, given on each element of the subgrid (first dimension)

equilibrium.time_slice[:].ggd[:].grid.identifier

(obsolescent)

STRUCTURE

Grid identifier
0) unspecified : unspecified
1) linear : Linear
2) cylinder : Cylindrical geometry (straight in axial direction)
3) limiter : Limiter
4) SN : Single null
5) CDN : Connected double null
6) DDN_bottom : Disconnected double null with inner X-point below the midplane
7) DDN_top : Disconnected double null with inner X-point above the midplane
8) annulus : Annular geometry (not necessarily with straight axis)
9) stellarator_island : Stellarator island geometry
10) structured_spaces : Structured grid represented with multiple spaces of dimension 1
11) LFS_snowflake_minus : Snowflake grid with secondary x point on the low field side, and the secondary separatrix on top of the primary
12) LFS_snowflake_plus : Snowflake grid with secondary x point to the right of the primary, and the secondary separatrix below the primary
100) reference : Refers to a GGD described in another IDS indicated by grid_path. In such a case, do not fill the grid_ggd node of this IDS

equilibrium.time_slice[:].ggd[:].grid.identifier.description

(obsolescent)

STR_0D

Verbose description

equilibrium.time_slice[:].ggd[:].grid.identifier.index

(obsolescent)

INT_0D

Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index.

equilibrium.time_slice[:].ggd[:].grid.identifier.name

(obsolescent)

STR_0D

Short string identifier

equilibrium.time_slice[:].ggd[:].grid.path

(obsolescent)

STR_0D

Path of the grid, including the IDS name, in case of implicit reference to a grid_ggd node described in another IDS. To be filled only if the grid is not described explicitly in this grid_ggd structure. Example syntax: 'wall:0/description_ggd(1)/grid_ggd', means that the grid is located in the wall IDS, occurrence 0, with ids path 'description_ggd(1)/grid_ggd'. See the link below for more details about IDS paths

equilibrium.time_slice[:].ggd[:].grid.space

(obsolescent)

[1...N]

STRUCT_ARRAY

Set of grid spaces

equilibrium.time_slice[:].ggd[:].grid.space[:].coordinates_type

(obsolescent)

[1...N]

INT_1D

Type of coordinates describing the physical space, for every coordinate of the space. The size of this node therefore defines the dimension of the space. The meaning of these predefined integer constants can be found in the Data Dictionary under utilities/coordinate_identifier.xml

equilibrium.time_slice[:].ggd[:].grid.space[:].geometry_type

(obsolescent)

STRUCTURE

Type of space geometry (0: standard, 1:Fourier, >1: Fourier with periodicity)

equilibrium.time_slice[:].ggd[:].grid.space[:].geometry_type.description

(obsolescent)

STR_0D

Verbose description

equilibrium.time_slice[:].ggd[:].grid.space[:].geometry_type.index

(obsolescent)

INT_0D

Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index.

equilibrium.time_slice[:].ggd[:].grid.space[:].geometry_type.name

(obsolescent)

STR_0D

Short string identifier

equilibrium.time_slice[:].ggd[:].grid.space[:].identifier

(obsolescent)

STRUCTURE

Space identifier
0) unspecified : unspecified
1) primary_standard : Primary space defining the standard grid
2) primary_staggered : Primary space defining a grid staggered with respect to the primary standard space
3) secondary_structured : Secondary space defining additional dimensions that extend the primary standard space in a structured way

equilibrium.time_slice[:].ggd[:].grid.space[:].identifier.description

(obsolescent)

STR_0D

Verbose description

equilibrium.time_slice[:].ggd[:].grid.space[:].identifier.index

(obsolescent)

INT_0D

Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index.

equilibrium.time_slice[:].ggd[:].grid.space[:].identifier.name

(obsolescent)

STR_0D

Short string identifier

equilibrium.time_slice[:].ggd[:].grid.space[:].objects_per_dimension

(obsolescent)

[1...N]

STRUCT_ARRAY

Definition of the space objects for every dimension (from one to the dimension of the highest-dimensional objects). The index correspond to 1=nodes, 2=edges, 3=faces, 4=cells/volumes, .... For every index, a collection of objects of that dimension is described.

equilibrium.time_slice[:].ggd[:].grid.space[:].objects_per_dimension[:].geometry_content

(obsolescent)

STRUCTURE

Content of the ../object/geometry node for this dimension
0) unspecified : unspecified
1) node_coordinates : For nodes : node coordinates
11) node_coordinates_connection : For nodes : node coordinates, then connection length, and distance in the poloidal plane to the nearest solid surface outside the separatrix
21) edge_areas : For edges : contains 3 surface areas after uniform extension in the third dimension of the edges. Geometry(1) and geometry(2) are the projections of that area along the local poloidal and radial coordinate respectively. Geometry(3) is the full surface area of the extended edge
31) face_indices_volume : For faces : coordinates indices (ix, iy) of the face within the structured grid of the code. The third element contains the volume after uniform extension in the third dimension of the faces
32) face_indices_volume_connection : For faces : coordinates indices (ix, iy) of the face within the structured grid of the code. The third element contains the volume after uniform extension in the third dimension of the faces. The fourth element is the connection length. The fifth element is the distance in the poloidal plane to the nearest solid surface outside the separatrix

equilibrium.time_slice[:].ggd[:].grid.space[:].objects_per_dimension[:].geometry_content.description

(obsolescent)

STR_0D

Verbose description

equilibrium.time_slice[:].ggd[:].grid.space[:].objects_per_dimension[:].geometry_content.index

(obsolescent)

INT_0D

Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index.

equilibrium.time_slice[:].ggd[:].grid.space[:].objects_per_dimension[:].geometry_content.name

(obsolescent)

STR_0D

Short string identifier

equilibrium.time_slice[:].ggd[:].grid.space[:].objects_per_dimension[:].object

(obsolescent)

[1...N]

STRUCT_ARRAY

Set of objects for a given dimension

equilibrium.time_slice[:].ggd[:].grid.space[:].objects_per_dimension[:].object[:].boundary

(obsolescent)

[1...N]

STRUCT_ARRAY

Set of (n-1)-dimensional objects defining the boundary of this n-dimensional object

equilibrium.time_slice[:].ggd[:].grid.space[:].objects_per_dimension[:].object[:].boundary[:].index

(obsolescent)

INT_0D

Index of this (n-1)-dimensional boundary object

equilibrium.time_slice[:].ggd[:].grid.space[:].objects_per_dimension[:].object[:].boundary[:].neighbours

(obsolescent)

[1...N]

INT_1D

List of indices of the n-dimensional objects adjacent to the given n-dimensional object. An object can possibly have multiple neighbours on a boundary

equilibrium.time_slice[:].ggd[:].grid.space[:].objects_per_dimension[:].object[:].geometry

(obsolescent)

[1...N]

FLT_1D (uncertain)

mixed

Geometry data associated with the object, its detailed content is defined by ../../geometry_content. Its dimension depends on the type of object, geometry and coordinate considered.

equilibrium.time_slice[:].ggd[:].grid.space[:].objects_per_dimension[:].object[:].geometry_2d

(obsolescent)

[1...N,
1...N]

FLT_2D (uncertain)

mixed

2D geometry data associated with the object. Its dimension depends on the type of object, geometry and coordinate considered. Typically, the first dimension represents the object coordinates, while the second dimension would represent the values of the various degrees of freedom of the finite element attached to the object.

equilibrium.time_slice[:].ggd[:].grid.space[:].objects_per_dimension[:].object[:].measure

(obsolescent)

FLT_0D (uncertain)

m^dimension

Measure of the space object, i.e. physical size (length for 1d, area for 2d, volume for 3d objects,...)

equilibrium.time_slice[:].ggd[:].grid.space[:].objects_per_dimension[:].object[:].nodes

(obsolescent)

[1...N]

INT_1D

List of nodes forming this object (indices to objects_per_dimension(1)%object(:) in Fortran notation)

equilibrium.time_slice[:].ggd[:].j_parallel

(alpha)

[1...N]

STRUCT_ARRAY

A.m^-2

Parallel (to magnetic field) plasma current density, given on various grid subsets

equilibrium.time_slice[:].ggd[:].j_parallel[:].coefficients

(alpha)

[equilibrium.time_slice[:].ggd[:].j_parallel[:].values,
1...N]

FLT_2D (uncertain)

A.m^-2

Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension).

equilibrium.time_slice[:].ggd[:].j_parallel[:].grid_index

(alpha)

INT_0D

Index of the grid used to represent this quantity

equilibrium.time_slice[:].ggd[:].j_parallel[:].grid_subset_index

(alpha)

INT_0D

Index of the grid subset the data is provided on. Corresponds to the index used in the grid subset definition: grid_subset(:)/identifier/index

equilibrium.time_slice[:].ggd[:].j_parallel[:].values

(alpha)

[1...N]

FLT_1D (uncertain)

A.m^-2

One scalar value is provided per element in the grid subset.

equilibrium.time_slice[:].ggd[:].j_tor

(alpha)

[1...N]

STRUCT_ARRAY

A.m^-2

Toroidal plasma current density, given on various grid subsets

equilibrium.time_slice[:].ggd[:].j_tor[:].coefficients

(alpha)

[equilibrium.time_slice[:].ggd[:].j_tor[:].values,
1...N]

FLT_2D (uncertain)

A.m^-2

Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension).

equilibrium.time_slice[:].ggd[:].j_tor[:].grid_index

(alpha)

INT_0D

Index of the grid used to represent this quantity

equilibrium.time_slice[:].ggd[:].j_tor[:].grid_subset_index

(alpha)

INT_0D

Index of the grid subset the data is provided on. Corresponds to the index used in the grid subset definition: grid_subset(:)/identifier/index

equilibrium.time_slice[:].ggd[:].j_tor[:].values

(alpha)

[1...N]

FLT_1D (uncertain)

A.m^-2

One scalar value is provided per element in the grid subset.

equilibrium.time_slice[:].ggd[:].phi

(alpha)

[1...N]

STRUCT_ARRAY

Wb

Values of the toroidal flux, given on various grid subsets

equilibrium.time_slice[:].ggd[:].phi[:].coefficients

(alpha)

[equilibrium.time_slice[:].ggd[:].phi[:].values,
1...N]

FLT_2D (uncertain)

Wb

Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension).

equilibrium.time_slice[:].ggd[:].phi[:].grid_index

(alpha)

INT_0D

Index of the grid used to represent this quantity

equilibrium.time_slice[:].ggd[:].phi[:].grid_subset_index

(alpha)

INT_0D

Index of the grid subset the data is provided on. Corresponds to the index used in the grid subset definition: grid_subset(:)/identifier/index

equilibrium.time_slice[:].ggd[:].phi[:].values

(alpha)

[1...N]

FLT_1D (uncertain)

Wb

One scalar value is provided per element in the grid subset.

equilibrium.time_slice[:].ggd[:].psi

(alpha)

[1...N]

STRUCT_ARRAY

Wb

Values of the poloidal flux, given on various grid subsets

equilibrium.time_slice[:].ggd[:].psi[:].coefficients

(alpha)

[equilibrium.time_slice[:].ggd[:].psi[:].values,
1...N]

FLT_2D (uncertain)

Wb

Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension).

equilibrium.time_slice[:].ggd[:].psi[:].grid_index

(alpha)

INT_0D

Index of the grid used to represent this quantity

equilibrium.time_slice[:].ggd[:].psi[:].grid_subset_index

(alpha)

INT_0D

Index of the grid subset the data is provided on. Corresponds to the index used in the grid subset definition: grid_subset(:)/identifier/index

equilibrium.time_slice[:].ggd[:].psi[:].values

(alpha)

[1...N]

FLT_1D (uncertain)

Wb

One scalar value is provided per element in the grid subset.

equilibrium.time_slice[:].ggd[:].r

(alpha)

[1...N]

STRUCT_ARRAY

m

Values of the major radius on various grid subsets

equilibrium.time_slice[:].ggd[:].r[:].coefficients

(alpha)

[equilibrium.time_slice[:].ggd[:].r[:].values,
1...N]

FLT_2D (uncertain)

m

Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension).

equilibrium.time_slice[:].ggd[:].r[:].grid_index

(alpha)

INT_0D

Index of the grid used to represent this quantity

equilibrium.time_slice[:].ggd[:].r[:].grid_subset_index

(alpha)

INT_0D

Index of the grid subset the data is provided on. Corresponds to the index used in the grid subset definition: grid_subset(:)/identifier/index

equilibrium.time_slice[:].ggd[:].r[:].values

(alpha)

[1...N]

FLT_1D (uncertain)

m

One scalar value is provided per element in the grid subset.

equilibrium.time_slice[:].ggd[:].theta

(alpha)

[1...N]

STRUCT_ARRAY

rad

Values of the poloidal angle, given on various grid subsets

equilibrium.time_slice[:].ggd[:].theta[:].coefficients

(alpha)

[equilibrium.time_slice[:].ggd[:].theta[:].values,
1...N]

FLT_2D (uncertain)

rad

Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension).

equilibrium.time_slice[:].ggd[:].theta[:].grid_index

(alpha)

INT_0D

Index of the grid used to represent this quantity

equilibrium.time_slice[:].ggd[:].theta[:].grid_subset_index

(alpha)

INT_0D

Index of the grid subset the data is provided on. Corresponds to the index used in the grid subset definition: grid_subset(:)/identifier/index

equilibrium.time_slice[:].ggd[:].theta[:].values

(alpha)

[1...N]

FLT_1D (uncertain)

rad

One scalar value is provided per element in the grid subset.

equilibrium.time_slice[:].ggd[:].z

(alpha)

[1...N]

STRUCT_ARRAY

m

Values of the Height on various grid subsets

equilibrium.time_slice[:].ggd[:].z[:].coefficients

(alpha)

[equilibrium.time_slice[:].ggd[:].z[:].values,
1...N]

FLT_2D (uncertain)

m

Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension).

equilibrium.time_slice[:].ggd[:].z[:].grid_index

(alpha)

INT_0D

Index of the grid used to represent this quantity

equilibrium.time_slice[:].ggd[:].z[:].grid_subset_index

(alpha)

INT_0D

Index of the grid subset the data is provided on. Corresponds to the index used in the grid subset definition: grid_subset(:)/identifier/index

equilibrium.time_slice[:].ggd[:].z[:].values

(alpha)

[1...N]

FLT_1D (uncertain)

m

One scalar value is provided per element in the grid subset.

equilibrium.time_slice[:].global_quantities

STRUCTURE

0D parameters of the equilibrium

equilibrium.time_slice[:].global_quantities.area

FLT_0D (uncertain)

m^2

Area of the LCFS poloidal cross section

equilibrium.time_slice[:].global_quantities.beta_normal

FLT_0D (uncertain)

-

Normalised toroidal beta, defined as 100 * beta_tor * a[m] * B0 [T] / ip [MA]

equilibrium.time_slice[:].global_quantities.beta_pol

FLT_0D (uncertain)

-

Poloidal beta. Defined as betap = 4 int(p dV) / [R_0 * mu_0 * Ip^2]

equilibrium.time_slice[:].global_quantities.beta_tor

FLT_0D (uncertain)

-

Toroidal beta, defined as the volume-averaged total perpendicular pressure divided by (B0^2/(2*mu0)), i.e. beta_toroidal = 2 mu0 int(p dV) / V / B0^2

equilibrium.time_slice[:].global_quantities.current_centre

STRUCTURE

Position and vertical velocity of the current centre

equilibrium.time_slice[:].global_quantities.current_centre.r

FLT_0D (uncertain)

m

Major radius of the current center, defined as integral over the poloidal cross section of (j_tor*r*dS) / Ip

equilibrium.time_slice[:].global_quantities.current_centre.velocity_z

FLT_0D (uncertain)

m.s^-1

Vertical velocity of the current center

equilibrium.time_slice[:].global_quantities.current_centre.z

FLT_0D (uncertain)

m

Height of the current center, defined as integral over the poloidal cross section of (j_tor*z*dS) / Ip

equilibrium.time_slice[:].global_quantities.energy_mhd

FLT_0D (uncertain)

J

Plasma energy content = 3/2 * int(p,dV) with p being the total pressure (thermal + fast particles) [J]. Time-dependent; Scalar

equilibrium.time_slice[:].global_quantities.ip

FLT_0D (uncertain)

A

Plasma current (toroidal component). Positive sign means anti-clockwise when viewed from above.

equilibrium.time_slice[:].global_quantities.length_pol

FLT_0D (uncertain)

m

Poloidal length of the magnetic surface

equilibrium.time_slice[:].global_quantities.li_3

FLT_0D (uncertain)

-

Internal inductance

equilibrium.time_slice[:].global_quantities.magnetic_axis

STRUCTURE

Magnetic axis position and toroidal field

equilibrium.time_slice[:].global_quantities.magnetic_axis.b_field_tor

FLT_0D (uncertain)

T

Total toroidal magnetic field at the magnetic axis

equilibrium.time_slice[:].global_quantities.magnetic_axis.b_tor

(obsolescent)

FLT_0D (uncertain)

T

Total toroidal magnetic field at the magnetic axis

equilibrium.time_slice[:].global_quantities.magnetic_axis.r

FLT_0D (uncertain)

m

Major radius of the magnetic axis

equilibrium.time_slice[:].global_quantities.magnetic_axis.z

FLT_0D (uncertain)

m

Height of the magnetic axis

equilibrium.time_slice[:].global_quantities.plasma_inductance

FLT_0D (uncertain)

H

Plasma inductance 2 E_magnetic/Ip^2, where E_magnetic = 1/2 * int(psi.j_tor.dS) (integral over the plasma poloidal cross-section)

equilibrium.time_slice[:].global_quantities.plasma_resistance

FLT_0D (uncertain)

ohm

Plasma resistance = int(e_field.j.dV) / Ip^2

equilibrium.time_slice[:].global_quantities.psi_axis

FLT_0D (uncertain)

Wb

Poloidal flux at the magnetic axis

equilibrium.time_slice[:].global_quantities.psi_boundary

FLT_0D (uncertain)

Wb

Poloidal flux at the selected plasma boundary

equilibrium.time_slice[:].global_quantities.psi_external_average

FLT_0D (uncertain)

Wb

Average (over the plasma poloidal cross section) plasma poloidal magnetic flux produced by all external circuits (CS and PF coils, eddy currents, VS in-vessel coils), given by the following formula : int(psi_external.j_tor.dS) / Ip

equilibrium.time_slice[:].global_quantities.q_95

FLT_0D (uncertain)

-

q at the 95% poloidal flux surface (IMAS uses COCOS=11: only positive when toroidal current and magnetic field are in same direction)

equilibrium.time_slice[:].global_quantities.q_axis

FLT_0D (uncertain)

-

q at the magnetic axis

equilibrium.time_slice[:].global_quantities.q_min

STRUCTURE

Minimum q value and position

equilibrium.time_slice[:].global_quantities.q_min.psi

FLT_0D (uncertain)

Wb

Minimum q position in poloidal flux

equilibrium.time_slice[:].global_quantities.q_min.psi_norm

FLT_0D (uncertain)

-

Minimum q position in normalised poloidal flux

equilibrium.time_slice[:].global_quantities.q_min.rho_tor_norm

FLT_0D (uncertain)

-

Minimum q position in normalised toroidal flux coordinate

equilibrium.time_slice[:].global_quantities.q_min.value

FLT_0D (uncertain)

-

Minimum q value

equilibrium.time_slice[:].global_quantities.rho_tor_boundary

FLT_0D (uncertain)

m

Toroidal flux coordinate at the selected plasma boundary

equilibrium.time_slice[:].global_quantities.surface

FLT_0D (uncertain)

m^2

Surface area of the toroidal flux surface

equilibrium.time_slice[:].global_quantities.v_external

FLT_0D (uncertain)

V

External voltage, i.e. time derivative of psi_external_average (with a minus sign : - d_psi_external_average/d_time)

equilibrium.time_slice[:].global_quantities.volume

FLT_0D (uncertain)

m^3

Total plasma volume

equilibrium.time_slice[:].global_quantities.w_mhd

(obsolescent)

FLT_0D (uncertain)

J

Plasma energy content = 3/2 * int(p,dV) with p being the total pressure (thermal + fast particles) [J]. Time-dependent; Scalar

equilibrium.time_slice[:].profiles_1d

STRUCTURE

Equilibrium profiles (1D radial grid) as a function of the poloidal flux

equilibrium.time_slice[:].profiles_1d.area

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

m^2

Cross-sectional area of the flux surface

equilibrium.time_slice[:].profiles_1d.b_average

(obsolescent)

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

T

Flux surface averaged B

equilibrium.time_slice[:].profiles_1d.b_field_average

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

T

Flux surface averaged modulus of B (always positive, irrespective of the sign convention for the B-field direction).

equilibrium.time_slice[:].profiles_1d.b_field_max

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

T

Maximum(modulus(B)) on the flux surface (always positive, irrespective of the sign convention for the B-field direction)

equilibrium.time_slice[:].profiles_1d.b_field_min

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

T

Minimum(modulus(B)) on the flux surface (always positive, irrespective of the sign convention for the B-field direction)

equilibrium.time_slice[:].profiles_1d.b_max

(obsolescent)

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

T

Maximum(B) on the flux surface

equilibrium.time_slice[:].profiles_1d.b_min

(obsolescent)

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

T

Minimum(B) on the flux surface

equilibrium.time_slice[:].profiles_1d.beta_pol

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

-

Poloidal beta profile. Defined as betap = 4 int(p dV) / [R_0 * mu_0 * Ip^2]

equilibrium.time_slice[:].profiles_1d.darea_dpsi

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

m^2.Wb^-1

Radial derivative of the cross-sectional area of the flux surface with respect to psi

equilibrium.time_slice[:].profiles_1d.darea_drho_tor

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

m

Radial derivative of the cross-sectional area of the flux surface with respect to rho_tor

equilibrium.time_slice[:].profiles_1d.dpressure_dpsi

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

Pa.Wb^-1

Derivative of pressure w.r.t. psi

equilibrium.time_slice[:].profiles_1d.dpsi_drho_tor

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

Wb/m

Derivative of Psi with respect to Rho_Tor

equilibrium.time_slice[:].profiles_1d.dvolume_dpsi

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

m^3.Wb^-1

Radial derivative of the volume enclosed in the flux surface with respect to Psi

equilibrium.time_slice[:].profiles_1d.dvolume_drho_tor

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

m^2

Radial derivative of the volume enclosed in the flux surface with respect to Rho_Tor

equilibrium.time_slice[:].profiles_1d.elongation

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

-

Elongation

equilibrium.time_slice[:].profiles_1d.f

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

T.m

Diamagnetic function (F=R B_Phi)

equilibrium.time_slice[:].profiles_1d.f_df_dpsi

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

T^2.m^2/Wb

Derivative of F w.r.t. Psi, multiplied with F

equilibrium.time_slice[:].profiles_1d.geometric_axis

STRUCTURE

RZ position of the geometric axis of the magnetic surfaces (defined as (Rmin+Rmax) / 2 and (Zmin+Zmax) / 2 of the surface)

equilibrium.time_slice[:].profiles_1d.geometric_axis.r

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

m

Major radius

equilibrium.time_slice[:].profiles_1d.geometric_axis.z

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

m

Height

equilibrium.time_slice[:].profiles_1d.gm1

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

m^-2

Flux surface averaged 1/R^2

equilibrium.time_slice[:].profiles_1d.gm2

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

m^-2

Flux surface averaged |grad_rho_tor|^2/R^2

equilibrium.time_slice[:].profiles_1d.gm3

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

-

Flux surface averaged |grad_rho_tor|^2

equilibrium.time_slice[:].profiles_1d.gm4

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

T^-2

Flux surface averaged 1/B^2

equilibrium.time_slice[:].profiles_1d.gm5

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

T^2

Flux surface averaged B^2

equilibrium.time_slice[:].profiles_1d.gm6

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

T^-2

Flux surface averaged |grad_rho_tor|^2/B^2

equilibrium.time_slice[:].profiles_1d.gm7

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

-

Flux surface averaged |grad_rho_tor|

equilibrium.time_slice[:].profiles_1d.gm8

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

m

Flux surface averaged R

equilibrium.time_slice[:].profiles_1d.gm9

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

m^-1

Flux surface averaged 1/R

equilibrium.time_slice[:].profiles_1d.j_parallel

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

A.m^-2

Flux surface averaged approximation to parallel current density = average(j.B) / B0, where B0 = /vacuum_toroidal_field/b0

equilibrium.time_slice[:].profiles_1d.j_tor

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

A.m^-2

Flux surface averaged toroidal current density = average(j_tor/R) / average(1/R)

equilibrium.time_slice[:].profiles_1d.magnetic_shear

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

-

Magnetic shear, defined as rho_tor/q . dq/drho_tor

equilibrium.time_slice[:].profiles_1d.mass_density

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

kg.m^-3

Mass density

equilibrium.time_slice[:].profiles_1d.phi

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

Wb

Toroidal flux

equilibrium.time_slice[:].profiles_1d.pressure

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

Pa

Pressure

equilibrium.time_slice[:].profiles_1d.psi

[1...N]

FLT_1D (uncertain)

Wb

Poloidal flux

equilibrium.time_slice[:].profiles_1d.psi_norm

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

-

Normalised poloidal flux, namely (psi(rho)-psi(magnetic_axis)) / (psi(LCFS)-psi(magnetic_axis))

equilibrium.time_slice[:].profiles_1d.q

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

-

Safety factor (IMAS uses COCOS=11: only positive when toroidal current and magnetic field are in same direction)

equilibrium.time_slice[:].profiles_1d.r_inboard

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

m

Radial coordinate (major radius) on the inboard side of the magnetic axis

equilibrium.time_slice[:].profiles_1d.r_outboard

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

m

Radial coordinate (major radius) on the outboard side of the magnetic axis

equilibrium.time_slice[:].profiles_1d.rho_tor

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

m

Toroidal flux coordinate = sqrt(phi/(pi*b0)), where the toroidal flux, phi, corresponds to time_slice/profiles_1d/phi, the toroidal magnetic field, b0, corresponds to vacuum_toroidal_field/b0 and pi can be found in the IMAS constants

equilibrium.time_slice[:].profiles_1d.rho_tor_norm

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

-

Normalised toroidal flux coordinate. The normalizing value for rho_tor_norm, is the toroidal flux coordinate at the equilibrium boundary (LCFS or 99.x % of the LCFS in case of a fixed boundary equilibium calculation)

equilibrium.time_slice[:].profiles_1d.rho_volume_norm

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

-

Normalised square root of enclosed volume (radial coordinate). The normalizing value is the enclosed volume at the equilibrium boundary (LCFS or 99.x % of the LCFS in case of a fixed boundary equilibium calculation)

equilibrium.time_slice[:].profiles_1d.squareness_lower_inner

(alpha)

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

-

Lower inner squareness (definition from T. Luce, Plasma Phys. Control. Fusion 55 (2013) 095009)

equilibrium.time_slice[:].profiles_1d.squareness_lower_outer

(alpha)

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

-

Lower outer squareness (definition from T. Luce, Plasma Phys. Control. Fusion 55 (2013) 095009)

equilibrium.time_slice[:].profiles_1d.squareness_upper_inner

(alpha)

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

-

Upper inner squareness (definition from T. Luce, Plasma Phys. Control. Fusion 55 (2013) 095009)

equilibrium.time_slice[:].profiles_1d.squareness_upper_outer

(alpha)

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

-

Upper outer squareness (definition from T. Luce, Plasma Phys. Control. Fusion 55 (2013) 095009)

equilibrium.time_slice[:].profiles_1d.surface

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

m^2

Surface area of the toroidal flux surface

equilibrium.time_slice[:].profiles_1d.trapped_fraction

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

-

Trapped particle fraction

equilibrium.time_slice[:].profiles_1d.triangularity_lower

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

-

Lower triangularity w.r.t. magnetic axis

equilibrium.time_slice[:].profiles_1d.triangularity_upper

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

-

Upper triangularity w.r.t. magnetic axis

equilibrium.time_slice[:].profiles_1d.volume

[equilibrium.time_slice[:].profiles_1d.psi]

FLT_1D (uncertain)

m^3

Volume enclosed in the flux surface

equilibrium.time_slice[:].profiles_2d

[1...N]

STRUCT_ARRAY

Equilibrium 2D profiles in the poloidal plane. Multiple 2D representations of the equilibrium can be stored here.

equilibrium.time_slice[:].profiles_2d[:].b_field_r

[equilibrium.time_slice[:].profiles_2d[:].grid.dim1,
equilibrium.time_slice[:].profiles_2d[:].grid.dim2]

FLT_2D (uncertain)

T

R component of the poloidal magnetic field

equilibrium.time_slice[:].profiles_2d[:].b_field_tor

[equilibrium.time_slice[:].profiles_2d[:].grid.dim1,
equilibrium.time_slice[:].profiles_2d[:].grid.dim2]

FLT_2D (uncertain)

T

Toroidal component of the magnetic field

equilibrium.time_slice[:].profiles_2d[:].b_field_z

[equilibrium.time_slice[:].profiles_2d[:].grid.dim1,
equilibrium.time_slice[:].profiles_2d[:].grid.dim2]

FLT_2D (uncertain)

T

Z component of the poloidal magnetic field

equilibrium.time_slice[:].profiles_2d[:].b_r

(obsolescent)

[equilibrium.time_slice[:].profiles_2d[:].grid.dim1,
equilibrium.time_slice[:].profiles_2d[:].grid.dim2]

FLT_2D (uncertain)

T

R component of the poloidal magnetic field

equilibrium.time_slice[:].profiles_2d[:].b_tor

(obsolescent)

[equilibrium.time_slice[:].profiles_2d[:].grid.dim1,
equilibrium.time_slice[:].profiles_2d[:].grid.dim2]

FLT_2D (uncertain)

T

Toroidal component of the magnetic field

equilibrium.time_slice[:].profiles_2d[:].b_z

(obsolescent)

[equilibrium.time_slice[:].profiles_2d[:].grid.dim1,
equilibrium.time_slice[:].profiles_2d[:].grid.dim2]

FLT_2D (uncertain)

T

Z component of the poloidal magnetic field

equilibrium.time_slice[:].profiles_2d[:].grid

STRUCTURE

Definition of the 2D grid (the content of dim1 and dim2 is defined by the selected grid_type)

equilibrium.time_slice[:].profiles_2d[:].grid.dim1

[1...N]

FLT_1D (uncertain)

mixed

First dimension values

equilibrium.time_slice[:].profiles_2d[:].grid.dim2

[1...N]

FLT_1D (uncertain)

mixed

Second dimension values

equilibrium.time_slice[:].profiles_2d[:].grid.volume_element

[equilibrium.time_slice[:].profiles_2d[:].grid.dim1,
equilibrium.time_slice[:].profiles_2d[:].grid.dim2]

FLT_2D (uncertain)

m^3

Elementary plasma volume of plasma enclosed in the cell formed by the nodes [dim1(i) dim2(j)], [dim1(i+1) dim2(j)], [dim1(i) dim2(j+1)] and [dim1(i+1) dim2(j+1)]

equilibrium.time_slice[:].profiles_2d[:].grid_type

STRUCTURE

Selection of one of a set of grid types
1) rectangular : Cylindrical R,Z ala eqdsk (R=dim1, Z=dim2). In this case the position arrays should not be filled since they are redundant with grid/dim1 and dim2.
2) inverse : Rhopolar_polar 2D polar coordinates (rho=dim1, theta=dim2) with magnetic axis as centre of grid; theta and values following the COCOS=11 convention; the polar angle is theta=atan2(z-zaxis,r-raxis)
11) inverse_psi_straight_field_line : Flux surface type with psi as radial label (dim1) and the straight-field line poloidal angle (mod(index,10)=1) (dim2); could be non-equidistant; magnetic axis as centre of grid; following the COCOS=11 convention
12) inverse_psi_equal_arc : Flux surface type with psi as radial label (dim1) and the equal arc poloidal angle (mod(index,10)=2) (dim2)
13) inverse_psi_polar : Flux surface type with psi as radial label (dim1) and the polar poloidal angle (mod(index,10)=3) (dim2); could be non-equidistant
14) inverse_psi_straight_field_line_fourier : Flux surface type with psi as radial label (dim1) and Fourier modes in the straight-field line poloidal angle (mod(index,10)=4) (dim2), could be non-equidistant; magnetic axis as centre of grid; following the COCOS=11 convention
15) inverse_psi_equal_arc_fourier : Flux surface type with psi as radial label (dim1) and Fourier modes in the equal arc poloidal angle (mod(index,10)=5) (dim2)
16) inverse_psi_polar_fourier : Flux surface type with psi as radial label (dim1) and Fourier modes in the polar poloidal angle (mod(index,10)=6) (dim2); could be non-equidistant
21) inverse_rhopolnorm_straight_field_line : Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and the straight-field line poloidal angle (dim2)
22) inverse_rhopolnorm_equal_arc : Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and the equal arc poloidal angle (dim2)
23) inverse_rhopolnorm_polar : Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and the polar poloidal angle (dim2)
24) inverse_rhopolnorm_straight_field_line_fourier : Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and Fourier modes in the straight-field line poloidal angle (dim2)
25) inverse_rhopolnorm_equal_arc_fourier : Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and Fourier modes in the equal arc poloidal angle (dim2)
26) inverse_rhopolnorm_polar_fourier : Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and Fourier modes in the polar poloidal angle (dim2)
31) inverse_rhotornorm_straight_field_line : Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and the straight-field line poloidal angle (dim2)
32) inverse_rhotornorm_equal_arc : Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and the equal arc poloidal angle (dim2)
33) inverse_rhotornorm_polar : Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and the polar poloidal angle (dim2)
34) inverse_rhotornorm_straight_field_line_fourier : Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and Fourier modes in the straight-field line poloidal angle (dim2)
35) inverse_rhotornorm_equal_arc_fourier : Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and Fourier modes in the equal arc poloidal angle (dim2)
36) inverse_rhotornorm_polar_fourier : Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and Fourier modes in the polar poloidal angle (dim2)
41) inverse_rhopol_straight_field_line : Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and the straight-field line poloidal angle (dim2)
42) inverse_rhopol_equal_arc : Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and the equal arc poloidal angle (dim2)
43) inverse_rhopol_polar : Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and the polar poloidal angle (dim2)
44) inverse_rhopol_straight_field_line_fourier : Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and Fourier modes in the straight-field line poloidal angle (dim2)
45) inverse_rhopol_equal_arc_fourier : Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and Fourier modes in the equal arc poloidal angle (dim2)
46) inverse_rhopol_polar_fourier : Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and Fourier modes in the polar poloidal angle (dim2)
51) inverse_rhotor_straight_field_line : Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and the straight-field line poloidal angle (dim2)
52) inverse_rhotor_equal_arc : Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and the equal arc poloidal angle (dim2)
53) inverse_rhotor_polar : Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and the polar poloidal angle (dim2)
54) inverse_rhotor_straight_field_line_fourier : Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and Fourier modes in the straight-field line poloidal angle (dim2)
55) inverse_rhotor_equal_arc_fourier : Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and Fourier modes in the equal arc poloidal angle (dim2)
56) inverse_rhotor_polar_fourier : Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and Fourier modes in the polar poloidal angle (dim2)
91) irregular_rz_na : Irregular grid, thus give list of vertices in dim1(1:ndim1), dim2(1:ndim1) and then all fields are on values(1:ndim1,1)

equilibrium.time_slice[:].profiles_2d[:].grid_type.description

STR_0D

Verbose description

equilibrium.time_slice[:].profiles_2d[:].grid_type.index

INT_0D

Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index.

equilibrium.time_slice[:].profiles_2d[:].grid_type.name

STR_0D

Short string identifier

equilibrium.time_slice[:].profiles_2d[:].j_parallel

[equilibrium.time_slice[:].profiles_2d[:].grid.dim1,
equilibrium.time_slice[:].profiles_2d[:].grid.dim2]

FLT_2D (uncertain)

A.m^-2

Defined as (j.B)/B0 where j and B are the current density and magnetic field vectors and B0 is the (signed) vacuum toroidal magnetic field strength at the geometric reference point (R0,Z0). It is formally not the component of the plasma current density parallel to the magnetic field

equilibrium.time_slice[:].profiles_2d[:].j_tor

[equilibrium.time_slice[:].profiles_2d[:].grid.dim1,
equilibrium.time_slice[:].profiles_2d[:].grid.dim2]

FLT_2D (uncertain)

A.m^-2

Toroidal plasma current density

equilibrium.time_slice[:].profiles_2d[:].phi

[equilibrium.time_slice[:].profiles_2d[:].grid.dim1,
equilibrium.time_slice[:].profiles_2d[:].grid.dim2]

FLT_2D (uncertain)

Wb

Toroidal flux

equilibrium.time_slice[:].profiles_2d[:].psi

[equilibrium.time_slice[:].profiles_2d[:].grid.dim1,
equilibrium.time_slice[:].profiles_2d[:].grid.dim2]

FLT_2D (uncertain)

Wb

Values of the poloidal flux at the grid in the poloidal plane

equilibrium.time_slice[:].profiles_2d[:].r

[equilibrium.time_slice[:].profiles_2d[:].grid.dim1,
equilibrium.time_slice[:].profiles_2d[:].grid.dim2]

FLT_2D (uncertain)

m

Values of the major radius on the grid

equilibrium.time_slice[:].profiles_2d[:].theta

[equilibrium.time_slice[:].profiles_2d[:].grid.dim1,
equilibrium.time_slice[:].profiles_2d[:].grid.dim2]

FLT_2D (uncertain)

rad

Values of the poloidal angle on the grid

equilibrium.time_slice[:].profiles_2d[:].type

STRUCTURE

Type of profiles (distinguishes contribution from plasma, vaccum fields and total fields)
0) total : Total fields
1) vacuum : Vacuum fields (without contribution from plasma)
2) pf_active : Contribution from active coils only to the fields (pf_active IDS)
3) pf_passive : Contribution from passive elements only to the fields (pf_passive IDS)
4) plasma : Plasma contribution to the fields

equilibrium.time_slice[:].profiles_2d[:].type.description

STR_0D

Verbose description

equilibrium.time_slice[:].profiles_2d[:].type.index

INT_0D

Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index.

equilibrium.time_slice[:].profiles_2d[:].type.name

STR_0D

Short string identifier

equilibrium.time_slice[:].profiles_2d[:].z

[equilibrium.time_slice[:].profiles_2d[:].grid.dim1,
equilibrium.time_slice[:].profiles_2d[:].grid.dim2]

FLT_2D (uncertain)

m

Values of the Height on the grid

equilibrium.time_slice[:].time

FLT_0D

s

Time

equilibrium.vacuum_toroidal_field

STRUCTURE

Characteristics of the vacuum toroidal field (used in rho_tor definition and in the normalization of current densities)

equilibrium.vacuum_toroidal_field.b0

[equilibrium.time]

FLT_1D (uncertain)

T

Vacuum toroidal field at R0 [T]; Positive sign means anti-clockwise when viewing from above. The product R0B0 must be consistent with the b_tor_vacuum_r field of the tf IDS.

equilibrium.vacuum_toroidal_field.r0

FLT_0D (uncertain)

m

Reference major radius where the vacuum toroidal magnetic field is given (usually a fixed position such as the middle of the vessel at the equatorial midplane)