waves

PathDimensionsTypeUnitsDescription

waves

(alpha)

RF wave propagation and deposition. Note that current estimates in this IDS are a priori not taking into account synergies between multiple sources (a convergence loop with Fokker-Planck calculations is required to account for such synergies)

waves.code

(alpha)

STRUCTURE

Generic decription of the code-specific parameters for the code that has produced this IDS

waves.code.commit

(alpha)

STR_0D

Unique commit reference of software

waves.code.description

(alpha)

STR_0D

Short description of the software (type, purpose)

waves.code.library

(alpha)

[1...N]

STRUCT_ARRAY

List of external libraries used by the code that has produced this IDS

waves.code.library[:].commit

(alpha)

STR_0D

Unique commit reference of software

waves.code.library[:].description

(alpha)

STR_0D

Short description of the software (type, purpose)

waves.code.library[:].name

(alpha)

STR_0D

Name of software

waves.code.library[:].parameters

(alpha)

STR_0D

List of the code specific parameters in XML format

waves.code.library[:].repository

(alpha)

STR_0D

URL of software repository

waves.code.library[:].version

(alpha)

STR_0D

Unique version (tag) of software

waves.code.name

(alpha)

STR_0D

Name of software generating IDS

waves.code.output_flag

(alpha)

[waves.time]

INT_1D

Output flag : 0 means the run is successful, other values mean some difficulty has been encountered, the exact meaning is then code specific. Negative values mean the result shall not be used.

waves.code.parameters

(alpha)

STR_0D

List of the code specific parameters in XML format

waves.code.repository

(alpha)

STR_0D

URL of software repository

waves.code.version

(alpha)

STR_0D

Unique version (tag) of software

waves.coherent_wave

(alpha)

[1...N]

STRUCT_ARRAY

Wave description for each frequency

waves.coherent_wave[:].beam_tracing

(alpha)

[waves.coherent_wave[:].beam_tracing[:].time]

STRUCT_ARRAY

Beam tracing calculations, for various time slices

waves.coherent_wave[:].beam_tracing[:].beam

(alpha)

[1...N]

STRUCT_ARRAY

Set of rays/beams describing the wave propagation

waves.coherent_wave[:].beam_tracing[:].beam[:].e_field

(alpha)

STRUCTURE

Electric field polarization of the ray/beam along its path

waves.coherent_wave[:].beam_tracing[:].beam[:].e_field.minus

(alpha)

STRUCTURE

V.m^-1

Right hand polarised electric field component

waves.coherent_wave[:].beam_tracing[:].beam[:].e_field.minus.imaginary

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

V.m^-1

Imaginary part

waves.coherent_wave[:].beam_tracing[:].beam[:].e_field.minus.real

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

V.m^-1

Real part

waves.coherent_wave[:].beam_tracing[:].beam[:].e_field.parallel

(alpha)

STRUCTURE

V.m^-1

Parallel to magnetic field polarised electric field component

waves.coherent_wave[:].beam_tracing[:].beam[:].e_field.parallel.imaginary

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

V.m^-1

Imaginary part

waves.coherent_wave[:].beam_tracing[:].beam[:].e_field.parallel.real

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

V.m^-1

Real part

waves.coherent_wave[:].beam_tracing[:].beam[:].e_field.plus

(alpha)

STRUCTURE

V.m^-1

Left hand polarised electric field component

waves.coherent_wave[:].beam_tracing[:].beam[:].e_field.plus.imaginary

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

V.m^-1

Imaginary part

waves.coherent_wave[:].beam_tracing[:].beam[:].e_field.plus.real

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

V.m^-1

Real part

waves.coherent_wave[:].beam_tracing[:].beam[:].electrons

(alpha)

STRUCTURE

Quantities related to the electrons

waves.coherent_wave[:].beam_tracing[:].beam[:].electrons.power

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

W

Power absorbed along the beam by the species

waves.coherent_wave[:].beam_tracing[:].beam[:].ion

(alpha)

[1...N]

STRUCT_ARRAY

Quantities related to the different ion species

waves.coherent_wave[:].beam_tracing[:].beam[:].ion[:].element

(alpha)

[1...N]

STRUCT_ARRAY

List of elements forming the atom or molecule

waves.coherent_wave[:].beam_tracing[:].beam[:].ion[:].element[:].a

(alpha)

FLT_0D (uncertain)

Atomic Mass Unit

Mass of atom

waves.coherent_wave[:].beam_tracing[:].beam[:].ion[:].element[:].atoms_n

(alpha)

INT_0D

Number of atoms of this element in the molecule

waves.coherent_wave[:].beam_tracing[:].beam[:].ion[:].element[:].multiplicity

(obsolescent)

FLT_0D (uncertain)

Elementary Charge Unit

Multiplicity of the atom

waves.coherent_wave[:].beam_tracing[:].beam[:].ion[:].element[:].z_n

(alpha)

FLT_0D (uncertain)

Elementary Charge Unit

Nuclear charge

waves.coherent_wave[:].beam_tracing[:].beam[:].ion[:].label

(alpha)

STR_0D

String identifying the species (e.g. H+, D+, T+, He+2, C+, D2, DT, CD4, ...)

waves.coherent_wave[:].beam_tracing[:].beam[:].ion[:].multiple_states_flag

(alpha)

INT_0D

Multiple state calculation flag : 0-Only one state is considered; 1-Multiple states are considered and are described in the state structure

waves.coherent_wave[:].beam_tracing[:].beam[:].ion[:].power

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

W

Power absorbed along the beam by the species

waves.coherent_wave[:].beam_tracing[:].beam[:].ion[:].state

(alpha)

[1...N]

STRUCT_ARRAY

Collisional exchange with the various states of the ion species (ionisation, energy, excitation, ...)

waves.coherent_wave[:].beam_tracing[:].beam[:].ion[:].state[:].electron_configuration

(alpha)

STR_0D

Configuration of atomic orbitals of this state, e.g. 1s2-2s1

waves.coherent_wave[:].beam_tracing[:].beam[:].ion[:].state[:].label

(alpha)

STR_0D

String identifying charge state (e.g. C+, C+2 , C+3, C+4, C+5, C+6, ...)

waves.coherent_wave[:].beam_tracing[:].beam[:].ion[:].state[:].power

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

W

Power absorbed along the beam by the species

waves.coherent_wave[:].beam_tracing[:].beam[:].ion[:].state[:].vibrational_level

(alpha)

FLT_0D (uncertain)

Elementary Charge Unit

Vibrational level (can be bundled)

waves.coherent_wave[:].beam_tracing[:].beam[:].ion[:].state[:].vibrational_mode

(alpha)

STR_0D

Vibrational mode of this state, e.g. "A_g". Need to define, or adopt a standard nomenclature.

waves.coherent_wave[:].beam_tracing[:].beam[:].ion[:].state[:].z_max

(alpha)

FLT_0D (uncertain)

Elementary Charge Unit

Maximum Z of the charge state bundle (equal to z_min if no bundle)

waves.coherent_wave[:].beam_tracing[:].beam[:].ion[:].state[:].z_min

(alpha)

FLT_0D (uncertain)

Elementary Charge Unit

Minimum Z of the charge state bundle (z_min = z_max = 0 for a neutral)

waves.coherent_wave[:].beam_tracing[:].beam[:].ion[:].z_ion

(alpha)

FLT_0D (uncertain)

Elementary Charge Unit

Ion charge (of the dominant ionisation state; lumped ions are allowed).

waves.coherent_wave[:].beam_tracing[:].beam[:].length

(alpha)

[1...N]

FLT_1D (uncertain)

m

Ray/beam curvilinear length

waves.coherent_wave[:].beam_tracing[:].beam[:].phase

(alpha)

STRUCTURE

Phase ellipse characteristics

waves.coherent_wave[:].beam_tracing[:].beam[:].phase.angle

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

rad

Rotation angle for the phase ellipse

waves.coherent_wave[:].beam_tracing[:].beam[:].phase.curvature

(alpha)

[1...2,
waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_2D (uncertain)

m^-1

Inverse curvature radii for the phase ellipse, positive/negative for divergent/convergent beams, in the horizontal direction (first index of the first coordinate) and in the vertical direction (second index of the first coordinate)

waves.coherent_wave[:].beam_tracing[:].beam[:].position

(alpha)

STRUCTURE

Position of the ray/beam along its path

waves.coherent_wave[:].beam_tracing[:].beam[:].position.phi

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

rad

Toroidal angle

waves.coherent_wave[:].beam_tracing[:].beam[:].position.psi

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

Wb

Poloidal flux

waves.coherent_wave[:].beam_tracing[:].beam[:].position.r

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

m

Major radius

waves.coherent_wave[:].beam_tracing[:].beam[:].position.theta

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

rad

Poloidal angle

waves.coherent_wave[:].beam_tracing[:].beam[:].position.z

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

m

Height

waves.coherent_wave[:].beam_tracing[:].beam[:].power_flow_norm

(alpha)

STRUCTURE

Normalised power flow

waves.coherent_wave[:].beam_tracing[:].beam[:].power_flow_norm.parallel

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

-

Normalized power flow in the direction parallel to the magnetic field

waves.coherent_wave[:].beam_tracing[:].beam[:].power_flow_norm.perpendicular

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

-

Normalized power flow in the direction perpendicular to the magnetic field

waves.coherent_wave[:].beam_tracing[:].beam[:].power_initial

(alpha)

FLT_0D (uncertain)

W

Initial power in the ray/beam

waves.coherent_wave[:].beam_tracing[:].beam[:].spot

(alpha)

STRUCTURE

Spot ellipse characteristics

waves.coherent_wave[:].beam_tracing[:].beam[:].spot.angle

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

rad

Rotation angle for the spot ellipse

waves.coherent_wave[:].beam_tracing[:].beam[:].spot.size

(alpha)

[1...2,
waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_2D (uncertain)

m

Size of the spot ellipse: distance between the central ray and the peripheral rays in the horizontal (first index of the first coordinate) and vertical direction (second index of the first coordinate)

waves.coherent_wave[:].beam_tracing[:].beam[:].wave_vector

(alpha)

STRUCTURE

Wave vector of the ray/beam along its path

waves.coherent_wave[:].beam_tracing[:].beam[:].wave_vector.k_r

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

m^-1

Wave vector component in the major radius direction

waves.coherent_wave[:].beam_tracing[:].beam[:].wave_vector.k_r_norm

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

-

Normalized wave vector component in the major radius direction = k_r / norm(k)

waves.coherent_wave[:].beam_tracing[:].beam[:].wave_vector.k_tor

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

m^-1

Wave vector component in the toroidal direction

waves.coherent_wave[:].beam_tracing[:].beam[:].wave_vector.k_tor_norm

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

-

Normalized wave vector component in the toroidal direction = k_tor / norm(k)

waves.coherent_wave[:].beam_tracing[:].beam[:].wave_vector.k_z

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

m^-1

Wave vector component in the vertical direction

waves.coherent_wave[:].beam_tracing[:].beam[:].wave_vector.k_z_norm

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

-

Normalized wave vector component in the vertical direction = k_z / norm(k)

waves.coherent_wave[:].beam_tracing[:].beam[:].wave_vector.n_parallel

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

-

Parallel refractive index

waves.coherent_wave[:].beam_tracing[:].beam[:].wave_vector.n_perpendicular

(alpha)

[waves.coherent_wave[:].beam_tracing[:].beam[:].length]

FLT_1D (uncertain)

-

Perpendicular refractive index

waves.coherent_wave[:].beam_tracing[:].beam[:].wave_vector.n_tor

(alpha)

[coherent_wave[:].beam_tracing[:].beam[:].length]

INT_1D

Toroidal wave number, contains a single value if varying_ntor = 0 to avoid useless repetition constant values. The wave vector toroidal component is defined as k_tor = n_tor grad phi where phi is the toroidal angle so that a positive n_tor means a wave propagating in the positive phi direction

waves.coherent_wave[:].beam_tracing[:].beam[:].wave_vector.varying_n_tor

(alpha)

INT_0D

Flag telling whether n_tor is constant along the ray path (0) or varying (1)

waves.coherent_wave[:].beam_tracing[:].time

(alpha)

FLT_0D

s

Time

waves.coherent_wave[:].full_wave

(alpha)

[waves.coherent_wave[:].full_wave[:].time]

STRUCT_ARRAY

Solution by a full wave code, given on a generic grid description, for various time slices

waves.coherent_wave[:].full_wave[:].b_field

(alpha)

STRUCTURE

Components of the wave magnetic field, , represented as Fourier coefficients B(n_tor,frequency) such that the electric is equal to real(B(n_tor,frequency).exp(i(n_tor.phi - 2.pi.frequency.t)))

waves.coherent_wave[:].full_wave[:].b_field.bi_normal

(alpha)

[1...N]

STRUCT_ARRAY

T

Magnitude of perpendicular (to the static magnetic field) wave magnetic field tangent to a flux surface, given on various grid subsets

waves.coherent_wave[:].full_wave[:].b_field.bi_normal[:].coefficients

(alpha)

[waves.coherent_wave[:].full_wave[:].b_field.bi_normal[:].values,
1...N]

CPX_2D (uncertain)

T

Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension).

waves.coherent_wave[:].full_wave[:].b_field.bi_normal[:].grid_index

(alpha)

INT_0D

Index of the grid used to represent this quantity

waves.coherent_wave[:].full_wave[:].b_field.bi_normal[:].grid_subset_index

(alpha)

INT_0D

Index of the grid subset the data is provided on

waves.coherent_wave[:].full_wave[:].b_field.bi_normal[:].values

(alpha)

[1...N]

CPX_1D (uncertain)

T

One scalar value is provided per element in the grid subset.

waves.coherent_wave[:].full_wave[:].b_field.normal

(alpha)

[1...N]

STRUCT_ARRAY

T

Magnitude of wave magnetic field normal to a flux surface, given on various grid subsets

waves.coherent_wave[:].full_wave[:].b_field.normal[:].coefficients

(alpha)

[waves.coherent_wave[:].full_wave[:].b_field.normal[:].values,
1...N]

CPX_2D (uncertain)

T

Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension).

waves.coherent_wave[:].full_wave[:].b_field.normal[:].grid_index

(alpha)

INT_0D

Index of the grid used to represent this quantity

waves.coherent_wave[:].full_wave[:].b_field.normal[:].grid_subset_index

(alpha)

INT_0D

Index of the grid subset the data is provided on

waves.coherent_wave[:].full_wave[:].b_field.normal[:].values

(alpha)

[1...N]

CPX_1D (uncertain)

T

One scalar value is provided per element in the grid subset.

waves.coherent_wave[:].full_wave[:].b_field.parallel

(alpha)

[1...N]

STRUCT_ARRAY

T

Parallel (to the static magnetic field) component of the wave magnetic field, given on various grid subsets

waves.coherent_wave[:].full_wave[:].b_field.parallel[:].coefficients

(alpha)

[waves.coherent_wave[:].full_wave[:].b_field.parallel[:].values,
1...N]

CPX_2D (uncertain)

T

Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension).

waves.coherent_wave[:].full_wave[:].b_field.parallel[:].grid_index

(alpha)

INT_0D

Index of the grid used to represent this quantity

waves.coherent_wave[:].full_wave[:].b_field.parallel[:].grid_subset_index

(alpha)

INT_0D

Index of the grid subset the data is provided on

waves.coherent_wave[:].full_wave[:].b_field.parallel[:].values

(alpha)

[1...N]

CPX_1D (uncertain)

T

One scalar value is provided per element in the grid subset.

waves.coherent_wave[:].full_wave[:].e_field

(alpha)

STRUCTURE

Components of the wave electric field, represented as Fourier coefficients E(n_tor,frequency) such that the electric is equal to real(E(n_tor,frequency).exp(i(n_tor.phi - 2.pi.frequency.t)))

waves.coherent_wave[:].full_wave[:].e_field.bi_normal

(alpha)

[1...N]

STRUCT_ARRAY

V.m^-1

Magnitude of perpendicular (to the static magnetic field) wave electric field tangent to a flux surface, given on various grid subsets

waves.coherent_wave[:].full_wave[:].e_field.bi_normal[:].coefficients

(alpha)

[waves.coherent_wave[:].full_wave[:].e_field.bi_normal[:].values,
1...N]

CPX_2D (uncertain)

V.m^-1

Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension).

waves.coherent_wave[:].full_wave[:].e_field.bi_normal[:].grid_index

(alpha)

INT_0D

Index of the grid used to represent this quantity

waves.coherent_wave[:].full_wave[:].e_field.bi_normal[:].grid_subset_index

(alpha)

INT_0D

Index of the grid subset the data is provided on

waves.coherent_wave[:].full_wave[:].e_field.bi_normal[:].values

(alpha)

[1...N]

CPX_1D (uncertain)

V.m^-1

One scalar value is provided per element in the grid subset.

waves.coherent_wave[:].full_wave[:].e_field.minus

(alpha)

[1...N]

STRUCT_ARRAY

V.m^-1

Right hand circularly polarised component of the perpendicular (to the static magnetic field) electric field, given on various grid subsets

waves.coherent_wave[:].full_wave[:].e_field.minus[:].coefficients

(alpha)

[waves.coherent_wave[:].full_wave[:].e_field.minus[:].values,
1...N]

CPX_2D (uncertain)

V.m^-1

Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension).

waves.coherent_wave[:].full_wave[:].e_field.minus[:].grid_index

(alpha)

INT_0D

Index of the grid used to represent this quantity

waves.coherent_wave[:].full_wave[:].e_field.minus[:].grid_subset_index

(alpha)

INT_0D

Index of the grid subset the data is provided on

waves.coherent_wave[:].full_wave[:].e_field.minus[:].values

(alpha)

[1...N]

CPX_1D (uncertain)

V.m^-1

One scalar value is provided per element in the grid subset.

waves.coherent_wave[:].full_wave[:].e_field.normal

(alpha)

[1...N]

STRUCT_ARRAY

V.m^-1

Magnitude of wave electric field normal to a flux surface, given on various grid subsets

waves.coherent_wave[:].full_wave[:].e_field.normal[:].coefficients

(alpha)

[waves.coherent_wave[:].full_wave[:].e_field.normal[:].values,
1...N]

CPX_2D (uncertain)

V.m^-1

Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension).

waves.coherent_wave[:].full_wave[:].e_field.normal[:].grid_index

(alpha)

INT_0D

Index of the grid used to represent this quantity

waves.coherent_wave[:].full_wave[:].e_field.normal[:].grid_subset_index

(alpha)

INT_0D

Index of the grid subset the data is provided on

waves.coherent_wave[:].full_wave[:].e_field.normal[:].values

(alpha)

[1...N]

CPX_1D (uncertain)

V.m^-1

One scalar value is provided per element in the grid subset.

waves.coherent_wave[:].full_wave[:].e_field.parallel

(alpha)

[1...N]

STRUCT_ARRAY

V.m^-1

Parallel (to the static magnetic field) component of electric field, given on various grid subsets

waves.coherent_wave[:].full_wave[:].e_field.parallel[:].coefficients

(alpha)

[waves.coherent_wave[:].full_wave[:].e_field.parallel[:].values,
1...N]

CPX_2D (uncertain)

V.m^-1

Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension).

waves.coherent_wave[:].full_wave[:].e_field.parallel[:].grid_index

(alpha)

INT_0D

Index of the grid used to represent this quantity

waves.coherent_wave[:].full_wave[:].e_field.parallel[:].grid_subset_index

(alpha)

INT_0D

Index of the grid subset the data is provided on

waves.coherent_wave[:].full_wave[:].e_field.parallel[:].values

(alpha)

[1...N]

CPX_1D (uncertain)

V.m^-1

One scalar value is provided per element in the grid subset.

waves.coherent_wave[:].full_wave[:].e_field.plus

(alpha)

[1...N]

STRUCT_ARRAY

V.m^-1

Left hand circularly polarised component of the perpendicular (to the static magnetic field) electric field, given on various grid subsets

waves.coherent_wave[:].full_wave[:].e_field.plus[:].coefficients

(alpha)

[waves.coherent_wave[:].full_wave[:].e_field.plus[:].values,
1...N]

CPX_2D (uncertain)

V.m^-1

Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension).

waves.coherent_wave[:].full_wave[:].e_field.plus[:].grid_index

(alpha)

INT_0D

Index of the grid used to represent this quantity

waves.coherent_wave[:].full_wave[:].e_field.plus[:].grid_subset_index

(alpha)

INT_0D

Index of the grid subset the data is provided on

waves.coherent_wave[:].full_wave[:].e_field.plus[:].values

(alpha)

[1...N]

CPX_1D (uncertain)

V.m^-1

One scalar value is provided per element in the grid subset.

waves.coherent_wave[:].full_wave[:].grid

(alpha)

STRUCTURE

Grid description

waves.coherent_wave[:].full_wave[:].grid.grid_subset

(alpha)

[1...N]

STRUCT_ARRAY

Grid subsets

waves.coherent_wave[:].full_wave[:].grid.grid_subset[:].base

(alpha)

[1...N]

STRUCT_ARRAY

Set of bases for the grid subset. For each base, the structure describes the projection of the base vectors on the canonical frame of the grid.

waves.coherent_wave[:].full_wave[:].grid.grid_subset[:].base[:].jacobian

(alpha)

[waves.coherent_wave[:].full_wave[:].grid.grid_subset[:].element]

FLT_1D (uncertain)

mixed

Metric Jacobian

waves.coherent_wave[:].full_wave[:].grid.grid_subset[:].base[:].tensor_contravariant

(alpha)

[waves.coherent_wave[:].full_wave[:].grid.grid_subset[:].element,
1...N,
1...N]

FLT_3D (uncertain)

mixed

Contravariant metric tensor, given on each element of the subgrid (first dimension)

waves.coherent_wave[:].full_wave[:].grid.grid_subset[:].base[:].tensor_covariant

(alpha)

[waves.coherent_wave[:].full_wave[:].grid.grid_subset[:].element,
1...N,
1...N]

FLT_3D (uncertain)

mixed

Covariant metric tensor, given on each element of the subgrid (first dimension)

waves.coherent_wave[:].full_wave[:].grid.grid_subset[:].dimension

(alpha)

INT_0D

Space dimension of the grid subset elements. This must be equal to the sum of the dimensions of the individual objects forming the element.

waves.coherent_wave[:].full_wave[:].grid.grid_subset[:].element

(alpha)

[1...N]

STRUCT_ARRAY

Set of elements defining the grid subset. An element is defined by a combination of objects from potentially all spaces

waves.coherent_wave[:].full_wave[:].grid.grid_subset[:].element[:].object

(alpha)

[1...N]

STRUCT_ARRAY

Set of objects defining the element

waves.coherent_wave[:].full_wave[:].grid.grid_subset[:].element[:].object[:].dimension

(alpha)

INT_0D

Dimension of the object

waves.coherent_wave[:].full_wave[:].grid.grid_subset[:].element[:].object[:].index

(alpha)

INT_0D

Object index

waves.coherent_wave[:].full_wave[:].grid.grid_subset[:].element[:].object[:].space

(alpha)

INT_0D

Index of the space from which that object is taken

waves.coherent_wave[:].full_wave[:].grid.grid_subset[:].identifier

(alpha)

STRUCTURE

Grid subset identifier
0) unspecified : unspecified
1) nodes : All nodes (0D) belonging to the associated spaces, implicit declaration (no need to replicate the grid elements in the grid_subset structure). In case of a structured grid represented with multiple 1D spaces, the order of the implicit elements in the grid_subset follows Fortran ordering, i.e. iterate always on nodes of the first space first, then move to the second node of the second space, ... : [((s1_1 to s1_end), s2_1, s3_1 ... sN_1), (((s1_1 to s1_end), s2_2, s3_1, ... sN_1)), ... ((s1_1 to s1_end), s2_end, s3_end ... sN_end)]
200) nodes_combining_spaces : All nodes (0D) belonging to the first space, implicitly extended in other dimensions represented by the other spaces in a structured way. The number of subset elements is thus equal to the number of nodes in the first space. Implicit declaration (no need to replicate the grid elements in the grid_subset structure).
2) edges : All edges (1D) belonging to the associated spaces, implicit declaration (no need to replicate the grid elements in the grid_subset structure)
3) x_aligned_edges : All x-aligned (poloidally) aligned edges belonging to the associated spaces
4) y_aligned_edges : All y-aligned (radially) aligned edges belonging to the associated spaces
5) cells : All cells (2D) belonging to the associated spaces, implicit declaration (no need to replicate the grid elements in the grid_subset structure)
6) x_points : Nodes defining x-points
7) core_cut : y-aligned edges inside the separatrix connecting to the active x-point
8) PFR_cut : y-aligned edges in the private flux region connecting to the active x-point
9) outer_throat : y-aligned edges in the outer SOL connecting to the active x-point
10) inner_throat : y-aligned edges in the inner SOL connecting to the active x-point
11) outer_midplane : y-aligned edges connecting to the node closest to outer midplane on the separatrix
12) inner_midplane : y-aligned edges connecting to the node closest to inner midplane on the separatrix
13) outer_target : y-aligned edges defining the outer target
14) inner_target : y-aligned edges defining the inner target
15) core_boundary : Innermost x-aligned edges
16) separatrix : x-aligned edges defining the active separatrix
17) main_chamber_wall : x-aligned edges defining main chamber wall outside of the divertor regions
18) outer_baffle : x-aligned edges defining the chamber wall of the outer active divertor region
19) inner_baffle : x-aligned edges defining the chamber wall of the inner active divertor region
20) outer_PFR_wall : x-aligned edges defining the private flux region wall of the outer active divertor region
21) inner_PFR_wall : x-aligned edges defining the private flux region wall of the inner active divertor region
22) core : Cells inside the active separatrix
23) sol : Cells defining the main SOL outside of the divertor regions
24) outer_divertor : Cells defining the outer divertor region
25) inner_divertor : Cells defining the inner divertor region
26) core_sol : x-aligned edges defining part of active separatrix separating core and sol
27) full_main_chamber_wall : main_chamber_wall + outer_baffle(s) + inner_baffle(s)
28) full_PFR_wall : outer_PFR__wall(s) + inner_PFR_wall(s)
29) core_cut_X2 : y-aligned edges inside the separatrix connecting to the non-active x-point
30) PFR_cut_X2 : y-aligned edges in the private flux region connecting to the non-active x-point
31) outer_throat_X2 : y-aligned edges in the outer SOL connecting to the non-active x-point
32) inner_throat_X2 : y-aligned edges in the inner SOL connecting to the non-active x-point
33) separatrix_2 : x-aligned edges defining the non-active separatrix
34) outer_baffle_2 : x-aligned edges defining the chamber wall of the outer non-active divertor region
35) inner_baffle_2 : x-aligned edges defining the chamber wall of the inner non-active divertor region
36) outer_PFR_wall_2 : x-aligned edges defining the private flux region wall of the outer non-active divertor region
37) inner_PFR_wall_2 : x-aligned edges defining the private flux region wall of the inner non-active divertor region
38) intra_sep : Cells between the two separatrices
39) outer_divertor_2 : Cells defining the outer inactive divertor region
40) inner_divertor_2 : Cells defining the inner inactive divertor region
41) outer_target_2 : y-aligned edges defining the outer inactive target
42) inner_target_2 : y-aligned edges defining the inner inactive target
43) volumes : All volumes (3D) belonging to the associated spaces, implicit declaration (no need to replicate the grid elements in the grid_subset structure)
44) full_wall : All edges defining walls, baffles, and targets
45) outer_sf_leg_entrance_1 : y-aligned edges defining the SOL entrance of the first snowflake outer leg
46) outer_sf_leg_entrance_2 : y-aligned edges defining the SOL entrance of the third snowflake outer leg
47) outer_sf_pfr_connection_1 : y-aligned edges defining the connection between the outer snowflake entrance and third leg
48) outer_sf_pfr_connection_2 : y-aligned edges defining the connection between the outer snowflake first and second leg
100) magnetic_axis : Point corresponding to the magnetic axis
101) outer_mid_plane_separatrix : Point on active separatrix at outer mid-plane
102) inner_mid_plane_separatrix : Point on active separatrix at inner mid-plane
103) outer_target_separatrix : Point on active separatrix at outer active target
104) inner_target_separatrix : Point on active separatrix at inner active target
105) outer_target_separatrix_2 : Point on non-active separatrix at outer non-active target
106) inner_target_separatrix_2 : Point on non-active separatrix at inner non-active target

waves.coherent_wave[:].full_wave[:].grid.grid_subset[:].identifier.description

(alpha)

STR_0D

Verbose description

waves.coherent_wave[:].full_wave[:].grid.grid_subset[:].identifier.index

(alpha)

INT_0D

Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index.

waves.coherent_wave[:].full_wave[:].grid.grid_subset[:].identifier.name

(alpha)

STR_0D

Short string identifier

waves.coherent_wave[:].full_wave[:].grid.grid_subset[:].metric

(alpha)

STRUCTURE

Metric of the canonical frame onto Cartesian coordinates

waves.coherent_wave[:].full_wave[:].grid.grid_subset[:].metric.jacobian

(alpha)

[waves.coherent_wave[:].full_wave[:].grid.grid_subset[:].element]

FLT_1D (uncertain)

mixed

Metric Jacobian

waves.coherent_wave[:].full_wave[:].grid.grid_subset[:].metric.tensor_contravariant

(alpha)

[waves.coherent_wave[:].full_wave[:].grid.grid_subset[:].element,
1...N,
1...N]

FLT_3D (uncertain)

mixed

Contravariant metric tensor, given on each element of the subgrid (first dimension)

waves.coherent_wave[:].full_wave[:].grid.grid_subset[:].metric.tensor_covariant

(alpha)

[waves.coherent_wave[:].full_wave[:].grid.grid_subset[:].element,
1...N,
1...N]

FLT_3D (uncertain)

mixed

Covariant metric tensor, given on each element of the subgrid (first dimension)

waves.coherent_wave[:].full_wave[:].grid.identifier

(alpha)

STRUCTURE

Grid identifier
0) unspecified : unspecified
1) linear : Linear
2) cylinder : Cylindrical geometry (straight in axial direction)
3) limiter : Limiter
4) SN : Single null
5) CDN : Connected double null
6) DDN_bottom : Disconnected double null with inner X-point below the midplane
7) DDN_top : Disconnected double null with inner X-point above the midplane
8) annulus : Annular geometry (not necessarily with straight axis)
9) stellarator_island : Stellarator island geometry
10) structured_spaces : Structured grid represented with multiple spaces of dimension 1
11) LFS_snowflake_minus : Snowflake grid with secondary x point on the low field side, and the secondary separatrix on top of the primary
12) LFS_snowflake_plus : Snowflake grid with secondary x point to the right of the primary, and the secondary separatrix below the primary
100) reference : Refers to a GGD described in another IDS indicated by grid_path. In such a case, do not fill the grid_ggd node of this IDS

waves.coherent_wave[:].full_wave[:].grid.identifier.description

(alpha)

STR_0D

Verbose description

waves.coherent_wave[:].full_wave[:].grid.identifier.index

(alpha)

INT_0D

Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index.

waves.coherent_wave[:].full_wave[:].grid.identifier.name

(alpha)

STR_0D

Short string identifier

waves.coherent_wave[:].full_wave[:].grid.path

(alpha)

STR_0D

Path of the grid, including the IDS name, in case of implicit reference to a grid_ggd node described in another IDS. To be filled only if the grid is not described explicitly in this grid_ggd structure. Example syntax: 'wall:0/description_ggd(1)/grid_ggd', means that the grid is located in the wall IDS, occurrence 0, with ids path 'description_ggd(1)/grid_ggd'. See the link below for more details about IDS paths

waves.coherent_wave[:].full_wave[:].grid.space

(alpha)

[1...N]

STRUCT_ARRAY

Set of grid spaces

waves.coherent_wave[:].full_wave[:].grid.space[:].coordinates_type

(alpha)

[1...N]

INT_1D

Type of coordinates describing the physical space, for every coordinate of the space. The size of this node therefore defines the dimension of the space. The meaning of these predefined integer constants can be found in the Data Dictionary under utilities/coordinate_identifier.xml

waves.coherent_wave[:].full_wave[:].grid.space[:].geometry_type

(alpha)

STRUCTURE

Type of space geometry (0: standard, 1:Fourier, >1: Fourier with periodicity)

waves.coherent_wave[:].full_wave[:].grid.space[:].geometry_type.description

(alpha)

STR_0D

Verbose description

waves.coherent_wave[:].full_wave[:].grid.space[:].geometry_type.index

(alpha)

INT_0D

Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index.

waves.coherent_wave[:].full_wave[:].grid.space[:].geometry_type.name

(alpha)

STR_0D

Short string identifier

waves.coherent_wave[:].full_wave[:].grid.space[:].identifier

(alpha)

STRUCTURE

Space identifier
0) unspecified : unspecified
1) primary_standard : Primary space defining the standard grid
2) primary_staggered : Primary space defining a grid staggered with respect to the primary standard space
3) secondary_structured : Secondary space defining additional dimensions that extend the primary standard space in a structured way

waves.coherent_wave[:].full_wave[:].grid.space[:].identifier.description

(alpha)

STR_0D

Verbose description

waves.coherent_wave[:].full_wave[:].grid.space[:].identifier.index

(alpha)

INT_0D

Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index.

waves.coherent_wave[:].full_wave[:].grid.space[:].identifier.name

(alpha)

STR_0D

Short string identifier

waves.coherent_wave[:].full_wave[:].grid.space[:].objects_per_dimension

(alpha)

[1...N]

STRUCT_ARRAY

Definition of the space objects for every dimension (from one to the dimension of the highest-dimensional objects). The index correspond to 1=nodes, 2=edges, 3=faces, 4=cells/volumes, .... For every index, a collection of objects of that dimension is described.

waves.coherent_wave[:].full_wave[:].grid.space[:].objects_per_dimension[:].geometry_content

(alpha)

STRUCTURE

Content of the ../object/geometry node for this dimension
0) unspecified : unspecified
1) node_coordinates : For nodes : node coordinates
11) node_coordinates_connection : For nodes : node coordinates, then connection length, and distance in the poloidal plane to the nearest solid surface outside the separatrix
21) edge_areas : For edges : contains 3 surface areas after uniform extension in the third dimension of the edges. Geometry(1) and geometry(2) are the projections of that area along the local poloidal and radial coordinate respectively. Geometry(3) is the full surface area of the extended edge
31) face_indices_volume : For faces : coordinates indices (ix, iy) of the face within the structured grid of the code. The third element contains the volume after uniform extension in the third dimension of the faces
32) face_indices_volume_connection : For faces : coordinates indices (ix, iy) of the face within the structured grid of the code. The third element contains the volume after uniform extension in the third dimension of the faces. The fourth element is the connection length. The fifth element is the distance in the poloidal plane to the nearest solid surface outside the separatrix

waves.coherent_wave[:].full_wave[:].grid.space[:].objects_per_dimension[:].geometry_content.description

(alpha)

STR_0D

Verbose description

waves.coherent_wave[:].full_wave[:].grid.space[:].objects_per_dimension[:].geometry_content.index

(alpha)

INT_0D

Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index.

waves.coherent_wave[:].full_wave[:].grid.space[:].objects_per_dimension[:].geometry_content.name

(alpha)

STR_0D

Short string identifier

waves.coherent_wave[:].full_wave[:].grid.space[:].objects_per_dimension[:].object

(alpha)

[1...N]

STRUCT_ARRAY

Set of objects for a given dimension

waves.coherent_wave[:].full_wave[:].grid.space[:].objects_per_dimension[:].object[:].boundary

(alpha)

[1...N]

STRUCT_ARRAY

Set of (n-1)-dimensional objects defining the boundary of this n-dimensional object

waves.coherent_wave[:].full_wave[:].grid.space[:].objects_per_dimension[:].object[:].boundary[:].index

(alpha)

INT_0D

Index of this (n-1)-dimensional boundary object

waves.coherent_wave[:].full_wave[:].grid.space[:].objects_per_dimension[:].object[:].boundary[:].neighbours

(alpha)

[1...N]

INT_1D

List of indices of the n-dimensional objects adjacent to the given n-dimensional object. An object can possibly have multiple neighbours on a boundary

waves.coherent_wave[:].full_wave[:].grid.space[:].objects_per_dimension[:].object[:].geometry

(alpha)

[1...N]

FLT_1D (uncertain)

mixed

Geometry data associated with the object, its detailed content is defined by ../../geometry_content. Its dimension depends on the type of object, geometry and coordinate considered.

waves.coherent_wave[:].full_wave[:].grid.space[:].objects_per_dimension[:].object[:].geometry_2d

(alpha)

[1...N,
1...N]

FLT_2D (uncertain)

mixed

2D geometry data associated with the object. Its dimension depends on the type of object, geometry and coordinate considered. Typically, the first dimension represents the object coordinates, while the second dimension would represent the values of the various degrees of freedom of the finite element attached to the object.

waves.coherent_wave[:].full_wave[:].grid.space[:].objects_per_dimension[:].object[:].measure

(alpha)

FLT_0D (uncertain)

m^dimension

Measure of the space object, i.e. physical size (length for 1d, area for 2d, volume for 3d objects,...)

waves.coherent_wave[:].full_wave[:].grid.space[:].objects_per_dimension[:].object[:].nodes

(alpha)

[1...N]

INT_1D

List of nodes forming this object (indices to objects_per_dimension(1)%object(:) in Fortran notation)

waves.coherent_wave[:].full_wave[:].k_perpendicular

(alpha)

[1...N]

STRUCT_ARRAY

V.m^-1

Perpendicular wave vector, given on various grid subsets

waves.coherent_wave[:].full_wave[:].k_perpendicular[:].coefficients

(alpha)

[waves.coherent_wave[:].full_wave[:].k_perpendicular[:].values,
1...N]

FLT_2D (uncertain)

V.m^-1

Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension).

waves.coherent_wave[:].full_wave[:].k_perpendicular[:].grid_index

(alpha)

INT_0D

Index of the grid used to represent this quantity

waves.coherent_wave[:].full_wave[:].k_perpendicular[:].grid_subset_index

(alpha)

INT_0D

Index of the grid subset the data is provided on. Corresponds to the index used in the grid subset definition: grid_subset(:)/identifier/index

waves.coherent_wave[:].full_wave[:].k_perpendicular[:].values

(alpha)

[1...N]

FLT_1D (uncertain)

V.m^-1

One scalar value is provided per element in the grid subset.

waves.coherent_wave[:].full_wave[:].time

(alpha)

FLT_0D

s

Time

waves.coherent_wave[:].global_quantities

(alpha)

[waves.coherent_wave[:].global_quantities[:].time]

STRUCT_ARRAY

Global quantities for various time slices

waves.coherent_wave[:].global_quantities[:].current_tor

(alpha)

FLT_0D (uncertain)

A

Wave driven toroidal current from a stand alone calculation (not consistent with other sources)

waves.coherent_wave[:].global_quantities[:].current_tor_n_tor

(alpha)

[waves.coherent_wave[:].global_quantities[:].n_tor]

FLT_1D (uncertain)

A

Wave driven toroidal current from a stand alone calculation (not consistent with other sources) per toroidal mode number

waves.coherent_wave[:].global_quantities[:].electrons

(alpha)

STRUCTURE

Quantities related to the electrons

waves.coherent_wave[:].global_quantities[:].electrons.distribution_assumption

(alpha)

INT_0D

Assumption on the distribution function used by the wave solver to calculate the power deposition on this species: 0 = Maxwellian (linear absorption); 1 = quasi-linear (F given by a distributions IDS).

waves.coherent_wave[:].global_quantities[:].electrons.power_fast

(alpha)

FLT_0D (uncertain)

W

Wave power absorbed by the fast particle population

waves.coherent_wave[:].global_quantities[:].electrons.power_fast_n_tor

(alpha)

[waves.coherent_wave[:].global_quantities[:].n_tor]

FLT_1D (uncertain)

W

Wave power absorbed by the fast particle population per toroidal mode number

waves.coherent_wave[:].global_quantities[:].electrons.power_thermal

(alpha)

FLT_0D (uncertain)

W

Wave power absorbed by the thermal particle population

waves.coherent_wave[:].global_quantities[:].electrons.power_thermal_n_tor

(alpha)

[waves.coherent_wave[:].global_quantities[:].n_tor]

FLT_1D (uncertain)

W

Wave power absorbed by the thermal particle population per toroidal mode number

waves.coherent_wave[:].global_quantities[:].frequency

(alpha)

FLT_0D (uncertain)

Hz

Wave frequency

waves.coherent_wave[:].global_quantities[:].ion

(alpha)

[1...N]

STRUCT_ARRAY

Quantities related to the different ion species

waves.coherent_wave[:].global_quantities[:].ion[:].distribution_assumption

(alpha)

INT_0D

Assumption on the distribution function used by the wave solver to calculate the power deposition on this species: 0 = Maxwellian (linear absorption); 1 = quasi-linear (F given by a distributions IDS).

waves.coherent_wave[:].global_quantities[:].ion[:].element

(alpha)

[1...N]

STRUCT_ARRAY

List of elements forming the atom or molecule

waves.coherent_wave[:].global_quantities[:].ion[:].element[:].a

(alpha)

FLT_0D (uncertain)

Atomic Mass Unit

Mass of atom

waves.coherent_wave[:].global_quantities[:].ion[:].element[:].atoms_n

(alpha)

INT_0D

Number of atoms of this element in the molecule

waves.coherent_wave[:].global_quantities[:].ion[:].element[:].multiplicity

(obsolescent)

FLT_0D (uncertain)

Elementary Charge Unit

Multiplicity of the atom

waves.coherent_wave[:].global_quantities[:].ion[:].element[:].z_n

(alpha)

FLT_0D (uncertain)

Elementary Charge Unit

Nuclear charge

waves.coherent_wave[:].global_quantities[:].ion[:].label

(alpha)

STR_0D

String identifying the species (e.g. H+, D+, T+, He+2, C+, D2, DT, CD4, ...)

waves.coherent_wave[:].global_quantities[:].ion[:].multiple_states_flag

(alpha)

INT_0D

Multiple state calculation flag : 0-Only one state is considered; 1-Multiple states are considered and are described in the state structure

waves.coherent_wave[:].global_quantities[:].ion[:].power_fast

(alpha)

FLT_0D (uncertain)

W

Wave power absorbed by the fast particle population

waves.coherent_wave[:].global_quantities[:].ion[:].power_fast_n_tor

(alpha)

[waves.coherent_wave[:].global_quantities[:].n_tor]

FLT_1D (uncertain)

W

Wave power absorbed by the fast particle population per toroidal mode number

waves.coherent_wave[:].global_quantities[:].ion[:].power_thermal

(alpha)

FLT_0D (uncertain)

W

Wave power absorbed by the thermal particle population

waves.coherent_wave[:].global_quantities[:].ion[:].power_thermal_n_tor

(alpha)

[waves.coherent_wave[:].global_quantities[:].n_tor]

FLT_1D (uncertain)

W

Wave power absorbed by the thermal particle population per toroidal mode number

waves.coherent_wave[:].global_quantities[:].ion[:].state

(alpha)

[1...N]

STRUCT_ARRAY

Collisional exchange with the various states of the ion species (ionisation, energy, excitation, ...)

waves.coherent_wave[:].global_quantities[:].ion[:].state[:].electron_configuration

(alpha)

STR_0D

Configuration of atomic orbitals of this state, e.g. 1s2-2s1

waves.coherent_wave[:].global_quantities[:].ion[:].state[:].label

(alpha)

STR_0D

String identifying charge state (e.g. C+, C+2 , C+3, C+4, C+5, C+6, ...)

waves.coherent_wave[:].global_quantities[:].ion[:].state[:].power_fast

(alpha)

FLT_0D (uncertain)

W

Wave power absorbed by the fast particle population

waves.coherent_wave[:].global_quantities[:].ion[:].state[:].power_fast_n_tor

(alpha)

[waves.coherent_wave[:].global_quantities[:].n_tor]

FLT_1D (uncertain)

W

Wave power absorbed by the fast particle population per toroidal mode number

waves.coherent_wave[:].global_quantities[:].ion[:].state[:].power_thermal

(alpha)

FLT_0D (uncertain)

W

Wave power absorbed by the thermal particle population

waves.coherent_wave[:].global_quantities[:].ion[:].state[:].power_thermal_n_tor

(alpha)

[waves.coherent_wave[:].global_quantities[:].n_tor]

FLT_1D (uncertain)

W

Wave power absorbed by the thermal particle population per toroidal mode number

waves.coherent_wave[:].global_quantities[:].ion[:].state[:].vibrational_level

(alpha)

FLT_0D (uncertain)

Elementary Charge Unit

Vibrational level (can be bundled)

waves.coherent_wave[:].global_quantities[:].ion[:].state[:].vibrational_mode

(alpha)

STR_0D

Vibrational mode of this state, e.g. "A_g". Need to define, or adopt a standard nomenclature.

waves.coherent_wave[:].global_quantities[:].ion[:].state[:].z_max

(alpha)

FLT_0D (uncertain)

Elementary Charge Unit

Maximum Z of the charge state bundle (equal to z_min if no bundle)

waves.coherent_wave[:].global_quantities[:].ion[:].state[:].z_min

(alpha)

FLT_0D (uncertain)

Elementary Charge Unit

Minimum Z of the charge state bundle (z_min = z_max = 0 for a neutral)

waves.coherent_wave[:].global_quantities[:].ion[:].z_ion

(alpha)

FLT_0D (uncertain)

Elementary Charge Unit

Ion charge (of the dominant ionisation state; lumped ions are allowed).

waves.coherent_wave[:].global_quantities[:].n_tor

(alpha)

[1...N]

INT_1D

Toroidal mode numbers, the wave vector toroidal component being defined as k_tor = n_tor grad phi where phi is the toroidal angle so that a positive n_tor means a wave propagating in the positive phi direction

waves.coherent_wave[:].global_quantities[:].power

(alpha)

FLT_0D (uncertain)

W

Total absorbed wave power

waves.coherent_wave[:].global_quantities[:].power_n_tor

(alpha)

[waves.coherent_wave[:].global_quantities[:].n_tor]

FLT_1D (uncertain)

W

Absorbed wave power per toroidal mode number

waves.coherent_wave[:].global_quantities[:].time

(alpha)

FLT_0D

s

Time

waves.coherent_wave[:].identifier

(alpha)

STRUCTURE

Identifier of the coherent wave, in terms of the type and name of the antenna driving the wave and an index separating waves driven by the same antenna.

waves.coherent_wave[:].identifier.antenna_name

(alpha)

STR_0D

Name of the antenna that launches this wave. Corresponds to the name specified in antennas/ec(i)/name, or antennas/ic(i)/name or antennas/lh(i)/name (depends of antenna/wave type) in the ANTENNAS IDS.

waves.coherent_wave[:].identifier.index_in_antenna

(alpha)

INT_0D

Index of the wave (starts at 1), separating different waves generated from a single antenna.

waves.coherent_wave[:].identifier.type

(alpha)

STRUCTURE

Wave/antenna type. index=1 for name=EC; index=2 for name=IC; index=3 for name=LH
0) unspecified : unspecified
1) EC : Wave field for electron cyclotron heating and current drive
2) LH : Wave field for lower hybrid heating and current drive
3) IC : Wave field for ion cyclotron frequency heating and current drive

waves.coherent_wave[:].identifier.type.description

(alpha)

STR_0D

Verbose description

waves.coherent_wave[:].identifier.type.index

(alpha)

INT_0D

Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index.

waves.coherent_wave[:].identifier.type.name

(alpha)

STR_0D

Short string identifier

waves.coherent_wave[:].profiles_1d

(alpha)

[waves.coherent_wave[:].profiles_1d[:].time]

STRUCT_ARRAY

Source radial profiles (flux surface averaged quantities) for various time slices

waves.coherent_wave[:].profiles_1d[:].current_parallel_density

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

A.m^-2

Flux surface averaged wave driven parallel current density = average(j.B) / B0, where B0 = vacuum_toroidal_field/b0.

waves.coherent_wave[:].profiles_1d[:].current_parallel_density_n_tor

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm,
waves.coherent_wave[:].profiles_1d[:].n_tor]

FLT_2D (uncertain)

A.m^-2

Flux surface averaged wave driven parallel current density, per toroidal mode number

waves.coherent_wave[:].profiles_1d[:].current_tor_inside

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

A

Wave driven toroidal current, inside a flux surface

waves.coherent_wave[:].profiles_1d[:].current_tor_inside_n_tor

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm,
waves.coherent_wave[:].profiles_1d[:].n_tor]

FLT_2D (uncertain)

A

Wave driven toroidal current, inside a flux surface, per toroidal mode number

waves.coherent_wave[:].profiles_1d[:].e_field_n_tor

(alpha)

[waves.coherent_wave[:].profiles_1d[:].n_tor]

STRUCT_ARRAY

Components of the electric field per toroidal mode number, averaged over the flux surface, where the averaged is weighted with the power deposition density, such that e_field = ave(e_field.power_density) / ave(power_density)

waves.coherent_wave[:].profiles_1d[:].e_field_n_tor[:].minus

(alpha)

STRUCTURE

V.m^-1

Right hand polarised electric field component for every flux surface

waves.coherent_wave[:].profiles_1d[:].e_field_n_tor[:].minus.amplitude

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

V.m^-1

Amplitude

waves.coherent_wave[:].profiles_1d[:].e_field_n_tor[:].minus.phase

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

V.m^-1

Phase

waves.coherent_wave[:].profiles_1d[:].e_field_n_tor[:].parallel

(alpha)

STRUCTURE

V.m^-1

Parallel electric field component for every flux surface

waves.coherent_wave[:].profiles_1d[:].e_field_n_tor[:].parallel.amplitude

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

V.m^-1

Amplitude

waves.coherent_wave[:].profiles_1d[:].e_field_n_tor[:].parallel.phase

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

V.m^-1

Phase

waves.coherent_wave[:].profiles_1d[:].e_field_n_tor[:].plus

(alpha)

STRUCTURE

V.m^-1

Left hand polarised electric field component for every flux surface

waves.coherent_wave[:].profiles_1d[:].e_field_n_tor[:].plus.amplitude

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

V.m^-1

Amplitude

waves.coherent_wave[:].profiles_1d[:].e_field_n_tor[:].plus.phase

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

V.m^-1

Phase

waves.coherent_wave[:].profiles_1d[:].electrons

(alpha)

STRUCTURE

Quantities related to the electrons

waves.coherent_wave[:].profiles_1d[:].electrons.power_density_fast

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

W.m^-3

Flux surface averaged absorbed wave power density on the fast species

waves.coherent_wave[:].profiles_1d[:].electrons.power_density_fast_n_tor

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm,
waves.coherent_wave[:].profiles_1d[:].n_tor]

FLT_2D (uncertain)

W.m^-3

Flux surface averaged absorbed wave power density on the fast species, per toroidal mode number

waves.coherent_wave[:].profiles_1d[:].electrons.power_density_thermal

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

W.m^-3

Flux surface averaged absorbed wave power density on the thermal species

waves.coherent_wave[:].profiles_1d[:].electrons.power_density_thermal_n_tor

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm,
waves.coherent_wave[:].profiles_1d[:].n_tor]

FLT_2D (uncertain)

W.m^-3

Flux surface averaged absorbed wave power density on the thermal species, per toroidal mode number

waves.coherent_wave[:].profiles_1d[:].electrons.power_inside_fast

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

W

Absorbed wave power on thermal species inside a flux surface (cumulative volume integral of the absorbed power density)

waves.coherent_wave[:].profiles_1d[:].electrons.power_inside_fast_n_tor

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm,
waves.coherent_wave[:].profiles_1d[:].n_tor]

FLT_2D (uncertain)

W

Absorbed wave power on thermal species inside a flux surface (cumulative volume integral of the absorbed power density), per toroidal mode number

waves.coherent_wave[:].profiles_1d[:].electrons.power_inside_thermal

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

W

Absorbed wave power on thermal species inside a flux surface (cumulative volume integral of the absorbed power density)

waves.coherent_wave[:].profiles_1d[:].electrons.power_inside_thermal_n_tor

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm,
waves.coherent_wave[:].profiles_1d[:].n_tor]

FLT_2D (uncertain)

W

Absorbed wave power on thermal species inside a flux surface (cumulative volume integral of the absorbed power density), per toroidal mode number

waves.coherent_wave[:].profiles_1d[:].grid

(alpha)

STRUCTURE

Radial grid

waves.coherent_wave[:].profiles_1d[:].grid.area

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

m^2

Cross-sectional area of the flux surface

waves.coherent_wave[:].profiles_1d[:].grid.psi

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

Wb

Poloidal magnetic flux

waves.coherent_wave[:].profiles_1d[:].grid.psi_boundary

(alpha)

FLT_0D (uncertain)

Wb

Value of the poloidal magnetic flux at the plasma boundary (useful to normalize the psi array values when the radial grid doesn't go from the magnetic axis to the plasma boundary)

waves.coherent_wave[:].profiles_1d[:].grid.psi_magnetic_axis

(alpha)

FLT_0D (uncertain)

Wb

Value of the poloidal magnetic flux at the magnetic axis (useful to normalize the psi array values when the radial grid doesn't go from the magnetic axis to the plasma boundary)

waves.coherent_wave[:].profiles_1d[:].grid.rho_pol_norm

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

-

Normalised poloidal flux coordinate = sqrt((psi(rho)-psi(magnetic_axis)) / (psi(LCFS)-psi(magnetic_axis)))

waves.coherent_wave[:].profiles_1d[:].grid.rho_tor

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

m

Toroidal flux coordinate. rho_tor = sqrt(b_flux_tor/(pi*b0)) ~ sqrt(pi*r^2*b0/(pi*b0)) ~ r [m]. The toroidal field used in its definition is indicated under vacuum_toroidal_field/b0

waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm

(alpha)

[1...N]

FLT_1D (uncertain)

-

Normalised toroidal flux coordinate. The normalizing value for rho_tor_norm, is the toroidal flux coordinate at the equilibrium boundary (LCFS or 99.x % of the LCFS in case of a fixed boundary equilibium calculation, see time_slice/boundary/b_flux_pol_norm in the equilibrium IDS)

waves.coherent_wave[:].profiles_1d[:].grid.surface

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

m^2

Surface area of the toroidal flux surface

waves.coherent_wave[:].profiles_1d[:].grid.volume

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

m^3

Volume enclosed inside the magnetic surface

waves.coherent_wave[:].profiles_1d[:].ion

(alpha)

[1...N]

STRUCT_ARRAY

Quantities related to the different ion species

waves.coherent_wave[:].profiles_1d[:].ion[:].element

(alpha)

[1...N]

STRUCT_ARRAY

List of elements forming the atom or molecule

waves.coherent_wave[:].profiles_1d[:].ion[:].element[:].a

(alpha)

FLT_0D (uncertain)

Atomic Mass Unit

Mass of atom

waves.coherent_wave[:].profiles_1d[:].ion[:].element[:].atoms_n

(alpha)

INT_0D

Number of atoms of this element in the molecule

waves.coherent_wave[:].profiles_1d[:].ion[:].element[:].multiplicity

(obsolescent)

FLT_0D (uncertain)

Elementary Charge Unit

Multiplicity of the atom

waves.coherent_wave[:].profiles_1d[:].ion[:].element[:].z_n

(alpha)

FLT_0D (uncertain)

Elementary Charge Unit

Nuclear charge

waves.coherent_wave[:].profiles_1d[:].ion[:].label

(alpha)

STR_0D

String identifying the species (e.g. H+, D+, T+, He+2, C+, D2, DT, CD4, ...)

waves.coherent_wave[:].profiles_1d[:].ion[:].multiple_states_flag

(alpha)

INT_0D

Multiple state calculation flag : 0-Only one state is considered; 1-Multiple states are considered and are described in the state structure

waves.coherent_wave[:].profiles_1d[:].ion[:].power_density_fast

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

W.m^-3

Flux surface averaged absorbed wave power density on the fast species

waves.coherent_wave[:].profiles_1d[:].ion[:].power_density_fast_n_tor

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm,
waves.coherent_wave[:].profiles_1d[:].n_tor]

FLT_2D (uncertain)

W.m^-3

Flux surface averaged absorbed wave power density on the fast species, per toroidal mode number

waves.coherent_wave[:].profiles_1d[:].ion[:].power_density_thermal

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

W.m^-3

Flux surface averaged absorbed wave power density on the thermal species

waves.coherent_wave[:].profiles_1d[:].ion[:].power_density_thermal_n_tor

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm,
waves.coherent_wave[:].profiles_1d[:].n_tor]

FLT_2D (uncertain)

W.m^-3

Flux surface averaged absorbed wave power density on the thermal species, per toroidal mode number

waves.coherent_wave[:].profiles_1d[:].ion[:].power_inside_fast

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

W

Absorbed wave power on thermal species inside a flux surface (cumulative volume integral of the absorbed power density)

waves.coherent_wave[:].profiles_1d[:].ion[:].power_inside_fast_n_tor

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm,
waves.coherent_wave[:].profiles_1d[:].n_tor]

FLT_2D (uncertain)

W

Absorbed wave power on thermal species inside a flux surface (cumulative volume integral of the absorbed power density), per toroidal mode number

waves.coherent_wave[:].profiles_1d[:].ion[:].power_inside_thermal

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

W

Absorbed wave power on thermal species inside a flux surface (cumulative volume integral of the absorbed power density)

waves.coherent_wave[:].profiles_1d[:].ion[:].power_inside_thermal_n_tor

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm,
waves.coherent_wave[:].profiles_1d[:].n_tor]

FLT_2D (uncertain)

W

Absorbed wave power on thermal species inside a flux surface (cumulative volume integral of the absorbed power density), per toroidal mode number

waves.coherent_wave[:].profiles_1d[:].ion[:].state

(alpha)

[1...N]

STRUCT_ARRAY

Collisional exchange with the various states of the ion species (ionisation, energy, excitation, ...)

waves.coherent_wave[:].profiles_1d[:].ion[:].state[:].electron_configuration

(alpha)

STR_0D

Configuration of atomic orbitals of this state, e.g. 1s2-2s1

waves.coherent_wave[:].profiles_1d[:].ion[:].state[:].label

(alpha)

STR_0D

String identifying charge state (e.g. C+, C+2 , C+3, C+4, C+5, C+6, ...)

waves.coherent_wave[:].profiles_1d[:].ion[:].state[:].power_density_fast

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

W.m^-3

Flux surface averaged absorbed wave power density on the fast species

waves.coherent_wave[:].profiles_1d[:].ion[:].state[:].power_density_fast_n_tor

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm,
waves.coherent_wave[:].profiles_1d[:].n_tor]

FLT_2D (uncertain)

W.m^-3

Flux surface averaged absorbed wave power density on the fast species, per toroidal mode number

waves.coherent_wave[:].profiles_1d[:].ion[:].state[:].power_density_thermal

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

W.m^-3

Flux surface averaged absorbed wave power density on the thermal species

waves.coherent_wave[:].profiles_1d[:].ion[:].state[:].power_density_thermal_n_tor

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm,
waves.coherent_wave[:].profiles_1d[:].n_tor]

FLT_2D (uncertain)

W.m^-3

Flux surface averaged absorbed wave power density on the thermal species, per toroidal mode number

waves.coherent_wave[:].profiles_1d[:].ion[:].state[:].power_inside_fast

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

W

Absorbed wave power on thermal species inside a flux surface (cumulative volume integral of the absorbed power density)

waves.coherent_wave[:].profiles_1d[:].ion[:].state[:].power_inside_fast_n_tor

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm,
waves.coherent_wave[:].profiles_1d[:].n_tor]

FLT_2D (uncertain)

W

Absorbed wave power on thermal species inside a flux surface (cumulative volume integral of the absorbed power density), per toroidal mode number

waves.coherent_wave[:].profiles_1d[:].ion[:].state[:].power_inside_thermal

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

W

Absorbed wave power on thermal species inside a flux surface (cumulative volume integral of the absorbed power density)

waves.coherent_wave[:].profiles_1d[:].ion[:].state[:].power_inside_thermal_n_tor

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm,
waves.coherent_wave[:].profiles_1d[:].n_tor]

FLT_2D (uncertain)

W

Absorbed wave power on thermal species inside a flux surface (cumulative volume integral of the absorbed power density), per toroidal mode number

waves.coherent_wave[:].profiles_1d[:].ion[:].state[:].vibrational_level

(alpha)

FLT_0D (uncertain)

Elementary Charge Unit

Vibrational level (can be bundled)

waves.coherent_wave[:].profiles_1d[:].ion[:].state[:].vibrational_mode

(alpha)

STR_0D

Vibrational mode of this state, e.g. "A_g". Need to define, or adopt a standard nomenclature.

waves.coherent_wave[:].profiles_1d[:].ion[:].state[:].z_max

(alpha)

FLT_0D (uncertain)

Elementary Charge Unit

Maximum Z of the charge state bundle (equal to z_min if no bundle)

waves.coherent_wave[:].profiles_1d[:].ion[:].state[:].z_min

(alpha)

FLT_0D (uncertain)

Elementary Charge Unit

Minimum Z of the charge state bundle (z_min = z_max = 0 for a neutral)

waves.coherent_wave[:].profiles_1d[:].ion[:].z_ion

(alpha)

FLT_0D (uncertain)

Elementary Charge Unit

Ion charge (of the dominant ionisation state; lumped ions are allowed).

waves.coherent_wave[:].profiles_1d[:].k_perpendicular

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm,
waves.coherent_wave[:].profiles_1d[:].n_tor]

FLT_2D (uncertain)

V.m^-1

Perpendicular wave vector, averaged over the flux surface, where the averaged is weighted with the power deposition density, such that k_perpendicular = ave(k_perpendicular.power_density) / ave(power_density), for every flux surface and every toroidal number

waves.coherent_wave[:].profiles_1d[:].n_tor

(alpha)

[1...N]

INT_1D

Toroidal mode numbers, the wave vector toroidal component being defined as k_tor = n_tor grad phi where phi is the toroidal angle so that a positive n_tor means a wave propagating in the positive phi direction

waves.coherent_wave[:].profiles_1d[:].power_density

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

W.m^-3

Flux surface averaged total absorbed wave power density (electrons + ion + fast populations)

waves.coherent_wave[:].profiles_1d[:].power_density_n_tor

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm,
waves.coherent_wave[:].profiles_1d[:].n_tor]

FLT_2D (uncertain)

W.m^-3

Flux surface averaged absorbed wave power density per toroidal mode number

waves.coherent_wave[:].profiles_1d[:].power_inside

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm]

FLT_1D (uncertain)

W

Total absorbed wave power (electrons + ion + fast populations) inside a flux surface (cumulative volume integral of the absorbed power density)

waves.coherent_wave[:].profiles_1d[:].power_inside_n_tor

(alpha)

[waves.coherent_wave[:].profiles_1d[:].grid.rho_tor_norm,
waves.coherent_wave[:].profiles_1d[:].n_tor]

FLT_2D (uncertain)

W

Total absorbed wave power (electrons + ion + fast populations) inside a flux surface (cumulative volume integral of the absorbed power density), per toroidal mode number

waves.coherent_wave[:].profiles_1d[:].time

(alpha)

FLT_0D

s

Time

waves.coherent_wave[:].profiles_2d

(alpha)

[waves.coherent_wave[:].profiles_2d[:].time]

STRUCT_ARRAY

2D profiles in poloidal cross-section, for various time slices

waves.coherent_wave[:].profiles_2d[:].e_field_n_tor

(alpha)

[waves.coherent_wave[:].profiles_2d[:].n_tor]

STRUCT_ARRAY

Components of the electric field per toroidal mode number

waves.coherent_wave[:].profiles_2d[:].e_field_n_tor[:].minus

(alpha)

STRUCTURE

V.m^-1

Right hand polarised electric field component

waves.coherent_wave[:].profiles_2d[:].e_field_n_tor[:].minus.amplitude

(alpha)

[1...N,
1...N]

FLT_2D (uncertain)

V.m^-1

Amplitude

waves.coherent_wave[:].profiles_2d[:].e_field_n_tor[:].minus.phase

(alpha)

[1...N,
1...N]

FLT_2D (uncertain)

V.m^-1

Phase

waves.coherent_wave[:].profiles_2d[:].e_field_n_tor[:].parallel

(alpha)

STRUCTURE

V.m^-1

Parallel electric field component

waves.coherent_wave[:].profiles_2d[:].e_field_n_tor[:].parallel.amplitude

(alpha)

[1...N,
1...N]

FLT_2D (uncertain)

V.m^-1

Amplitude

waves.coherent_wave[:].profiles_2d[:].e_field_n_tor[:].parallel.phase

(alpha)

[1...N,
1...N]

FLT_2D (uncertain)

V.m^-1

Phase

waves.coherent_wave[:].profiles_2d[:].e_field_n_tor[:].plus

(alpha)

STRUCTURE

V.m^-1

Left hand polarised electric field component

waves.coherent_wave[:].profiles_2d[:].e_field_n_tor[:].plus.amplitude

(alpha)

[1...N,
1...N]

FLT_2D (uncertain)

V.m^-1

Amplitude

waves.coherent_wave[:].profiles_2d[:].e_field_n_tor[:].plus.phase

(alpha)

[1...N,
1...N]

FLT_2D (uncertain)

V.m^-1

Phase

waves.coherent_wave[:].profiles_2d[:].electrons

(alpha)

STRUCTURE

Quantities related to the electrons

waves.coherent_wave[:].profiles_2d[:].electrons.power_density_fast

(alpha)

[1...N,
1...N]

FLT_2D (uncertain)

W.m^-3

Absorbed wave power density on the fast species

waves.coherent_wave[:].profiles_2d[:].electrons.power_density_fast_n_tor

(alpha)

[1...N,
1...N,
waves.coherent_wave[:].profiles_2d[:].n_tor]

FLT_3D (uncertain)

W.m^-3

Absorbed wave power density on the fast species, per toroidal mode number

waves.coherent_wave[:].profiles_2d[:].electrons.power_density_thermal

(alpha)

[1...N,
1...N]

FLT_2D (uncertain)

W.m^-3

Absorbed wave power density on the thermal species

waves.coherent_wave[:].profiles_2d[:].electrons.power_density_thermal_n_tor

(alpha)

[1...N,
1...N,
waves.coherent_wave[:].profiles_2d[:].n_tor]

FLT_3D (uncertain)

W.m^-3

Absorbed wave power density on the thermal species, per toroidal mode number

waves.coherent_wave[:].profiles_2d[:].grid

(alpha)

STRUCTURE

2D grid in a poloidal cross-section

waves.coherent_wave[:].profiles_2d[:].grid.area

(alpha)

[1...N,
1...N]

FLT_2D (uncertain)

m^2

Cross-sectional area of the flux surface

waves.coherent_wave[:].profiles_2d[:].grid.psi

(alpha)

[1...N,
1...N]

FLT_2D (uncertain)

Wb

Poloidal magnetic flux

waves.coherent_wave[:].profiles_2d[:].grid.r

(alpha)

[1...N,
1...N]

FLT_2D (uncertain)

m

Major radius

waves.coherent_wave[:].profiles_2d[:].grid.rho_tor

(alpha)

[1...N,
1...N]

FLT_2D (uncertain)

m

Toroidal flux coordinate. The toroidal field used in its definition is indicated under vacuum_toroidal_field/b0

waves.coherent_wave[:].profiles_2d[:].grid.rho_tor_norm

(alpha)

[1...N,
1...N]

FLT_2D (uncertain)

-

Normalised toroidal flux coordinate. The normalizing value for rho_tor_norm, is the toroidal flux coordinate at the equilibrium boundary (LCFS or 99.x % of the LCFS in case of a fixed boundary equilibium calculation)

waves.coherent_wave[:].profiles_2d[:].grid.theta_geometric

(alpha)

[1...N,
1...N]

FLT_2D (uncertain)

rad

Geometrical poloidal angle

waves.coherent_wave[:].profiles_2d[:].grid.theta_straight

(alpha)

[1...N,
1...N]

FLT_2D (uncertain)

rad

Straight field line poloidal angle

waves.coherent_wave[:].profiles_2d[:].grid.type

(alpha)

[waves.coherent_wave[:].profiles_2d[:].grid.rho_tor_norm]

STRUCTURE

m^3

Grid type: index=0: Rectangular grid in the (R,Z) coordinates; index=1: Rectangular grid in the (radial, theta_geometric) coordinates; index=2: Rectangular grid in the (radial, theta_straight) coordinates. index=3: unstructured grid.

waves.coherent_wave[:].profiles_2d[:].grid.type.description

(alpha)

STR_0D

Verbose description

waves.coherent_wave[:].profiles_2d[:].grid.type.index

(alpha)

INT_0D

Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index.

waves.coherent_wave[:].profiles_2d[:].grid.type.name

(alpha)

STR_0D

Short string identifier

waves.coherent_wave[:].profiles_2d[:].grid.volume

(alpha)

[1...N,
1...N]

FLT_2D (uncertain)

m^3

Volume enclosed inside the magnetic surface

waves.coherent_wave[:].profiles_2d[:].grid.z

(alpha)

[1...N,
1...N]

FLT_2D (uncertain)

m

Height

waves.coherent_wave[:].profiles_2d[:].ion

(alpha)

[1...N]

STRUCT_ARRAY

Quantities related to the different ion species

waves.coherent_wave[:].profiles_2d[:].ion[:].element

(alpha)

[1...N]

STRUCT_ARRAY

List of elements forming the atom or molecule

waves.coherent_wave[:].profiles_2d[:].ion[:].element[:].a

(alpha)

FLT_0D (uncertain)

Atomic Mass Unit

Mass of atom

waves.coherent_wave[:].profiles_2d[:].ion[:].element[:].atoms_n

(alpha)

INT_0D

Number of atoms of this element in the molecule

waves.coherent_wave[:].profiles_2d[:].ion[:].element[:].multiplicity

(obsolescent)

FLT_0D (uncertain)

Elementary Charge Unit

Multiplicity of the atom

waves.coherent_wave[:].profiles_2d[:].ion[:].element[:].z_n

(alpha)

FLT_0D (uncertain)

Elementary Charge Unit

Nuclear charge

waves.coherent_wave[:].profiles_2d[:].ion[:].label

(alpha)

STR_0D

String identifying the species (e.g. H+, D+, T+, He+2, C+, D2, DT, CD4, ...)

waves.coherent_wave[:].profiles_2d[:].ion[:].multiple_states_flag

(alpha)

INT_0D

Multiple state calculation flag : 0-Only one state is considered; 1-Multiple states are considered and are described in the state structure

waves.coherent_wave[:].profiles_2d[:].ion[:].power_density_fast

(alpha)

[1...N,
1...N]

FLT_2D (uncertain)

W.m^-3

Absorbed wave power density on the fast species

waves.coherent_wave[:].profiles_2d[:].ion[:].power_density_fast_n_tor

(alpha)

[1...N,
1...N,
waves.coherent_wave[:].profiles_2d[:].n_tor]

FLT_3D (uncertain)

W.m^-3

Absorbed wave power density on the fast species, per toroidal mode number

waves.coherent_wave[:].profiles_2d[:].ion[:].power_density_thermal

(alpha)

[1...N,
1...N]

FLT_2D (uncertain)

W.m^-3

Absorbed wave power density on the thermal species

waves.coherent_wave[:].profiles_2d[:].ion[:].power_density_thermal_n_tor

(alpha)

[1...N,
1...N,
waves.coherent_wave[:].profiles_2d[:].n_tor]

FLT_3D (uncertain)

W.m^-3

Absorbed wave power density on the thermal species, per toroidal mode number

waves.coherent_wave[:].profiles_2d[:].ion[:].state

(alpha)

[1...N]

STRUCT_ARRAY

Collisional exchange with the various states of the ion species (ionisation, energy, excitation, ...)

waves.coherent_wave[:].profiles_2d[:].ion[:].state[:].electron_configuration

(alpha)

STR_0D

Configuration of atomic orbitals of this state, e.g. 1s2-2s1

waves.coherent_wave[:].profiles_2d[:].ion[:].state[:].label

(alpha)

STR_0D

String identifying charge state (e.g. C+, C+2 , C+3, C+4, C+5, C+6, ...)

waves.coherent_wave[:].profiles_2d[:].ion[:].state[:].power_density_fast

(alpha)

[1...N,
1...N]

FLT_2D (uncertain)

W.m^-3

Absorbed wave power density on the fast species

waves.coherent_wave[:].profiles_2d[:].ion[:].state[:].power_density_fast_n_tor

(alpha)

[1...N,
1...N,
waves.coherent_wave[:].profiles_2d[:].n_tor]

FLT_3D (uncertain)

W.m^-3

Absorbed wave power density on the fast species, per toroidal mode number

waves.coherent_wave[:].profiles_2d[:].ion[:].state[:].power_density_thermal

(alpha)

[1...N,
1...N]

FLT_2D (uncertain)

W.m^-3

Absorbed wave power density on the thermal species

waves.coherent_wave[:].profiles_2d[:].ion[:].state[:].power_density_thermal_n_tor

(alpha)

[1...N,
1...N,
waves.coherent_wave[:].profiles_2d[:].n_tor]

FLT_3D (uncertain)

W.m^-3

Absorbed wave power density on the thermal species, per toroidal mode number

waves.coherent_wave[:].profiles_2d[:].ion[:].state[:].vibrational_level

(alpha)

FLT_0D (uncertain)

Elementary Charge Unit

Vibrational level (can be bundled)

waves.coherent_wave[:].profiles_2d[:].ion[:].state[:].vibrational_mode

(alpha)

STR_0D

Vibrational mode of this state, e.g. "A_g". Need to define, or adopt a standard nomenclature.

waves.coherent_wave[:].profiles_2d[:].ion[:].state[:].z_max

(alpha)

FLT_0D (uncertain)

Elementary Charge Unit

Maximum Z of the charge state bundle (equal to z_min if no bundle)

waves.coherent_wave[:].profiles_2d[:].ion[:].state[:].z_min

(alpha)

FLT_0D (uncertain)

Elementary Charge Unit

Minimum Z of the charge state bundle (z_min = z_max = 0 for a neutral)

waves.coherent_wave[:].profiles_2d[:].ion[:].z_ion

(alpha)

FLT_0D (uncertain)

Elementary Charge Unit

Ion charge (of the dominant ionisation state; lumped ions are allowed).

waves.coherent_wave[:].profiles_2d[:].n_tor

(alpha)

[1...N]

INT_1D

Toroidal mode numbers, the wave vector toroidal component being defined as k_tor = n_tor grad phi where phi is the toroidal angle so that a positive n_tor means a wave propagating in the positive phi direction

waves.coherent_wave[:].profiles_2d[:].power_density

(alpha)

[1...N,
1...N]

FLT_2D (uncertain)

W.m^-3

Total absorbed wave power density (electrons + ion + fast populations)

waves.coherent_wave[:].profiles_2d[:].power_density_n_tor

(alpha)

[1...N,
1...N,
waves.coherent_wave[:].profiles_2d[:].n_tor]

FLT_3D (uncertain)

W.m^-3

Absorbed wave power density per toroidal mode number

waves.coherent_wave[:].profiles_2d[:].time

(alpha)

FLT_0D

s

Time

waves.coherent_wave[:].wave_solver_type

(alpha)

STRUCTURE

Type of wave deposition solver used for this wave. Index = 1 for beam/ray tracing; index = 2 for full wave

waves.coherent_wave[:].wave_solver_type.description

(alpha)

STR_0D

Verbose description

waves.coherent_wave[:].wave_solver_type.index

(alpha)

INT_0D

Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index.

waves.coherent_wave[:].wave_solver_type.name

(alpha)

STR_0D

Short string identifier

waves.ids_properties

(alpha)

STRUCTURE

Interface Data Structure properties. This element identifies the node above as an IDS

waves.ids_properties.comment

(alpha)

STR_0D

Any comment describing the content of this IDS

waves.ids_properties.creation_date

(alpha)

STR_0D

Date at which this data has been produced

waves.ids_properties.homogeneous_time

(alpha)

INT_0D

This node must be filled (with 0, 1, or 2) for the IDS to be valid. If 1, the time of this IDS is homogeneous, i.e. the time values for this IDS are stored in the time node just below the root of this IDS. If 0, the time values are stored in the various time fields at lower levels in the tree. In the case only constant or static nodes are filled within the IDS, homogeneous_time must be set to 2

waves.ids_properties.name

(alpha)

STR_0D

User-defined name for this IDS occurrence

waves.ids_properties.occurrence

INT_0D

waves.ids_properties.occurrence_type

(alpha)

STRUCTURE

Type of data contained in this occurrence
1) reconstruction : Equilibrium reconstruction
2) prediction_fixed : Equilibrium prediction, fixed boundary
3) prediction_free : Equilibrium prediction, free boundary
4) mapping : Used for mapping equilibrium results from one grid type / resolution to another, or for including variables not present in the first set such as the calculation of magnetic field of other derived parameters

waves.ids_properties.occurrence_type.description

(alpha)

STR_0D

Verbose description

waves.ids_properties.occurrence_type.index

(alpha)

INT_0D

Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index.

waves.ids_properties.occurrence_type.name

(alpha)

STR_0D

Short string identifier

waves.ids_properties.plugins

(alpha)

STRUCTURE

Information about the plugins used to write/read this IDS. This structure is filled automatically by the Access Layer at GET/PUT time, no need to fill it via a user program.

waves.ids_properties.plugins.infrastructure_get

(alpha)

STRUCTURE

Plugin infrastructure used to GET the data

waves.ids_properties.plugins.infrastructure_get.commit

(alpha)

STR_0D

Unique commit reference of software

waves.ids_properties.plugins.infrastructure_get.description

(alpha)

STR_0D

Short description of the software (type, purpose)

waves.ids_properties.plugins.infrastructure_get.name

(alpha)

STR_0D

Name of software used

waves.ids_properties.plugins.infrastructure_get.repository

(alpha)

STR_0D

URL of software repository

waves.ids_properties.plugins.infrastructure_get.version

(alpha)

STR_0D

Unique version (tag) of software

waves.ids_properties.plugins.infrastructure_put

(alpha)

STRUCTURE

Plugin infrastructure used to PUT the data

waves.ids_properties.plugins.infrastructure_put.commit

(alpha)

STR_0D

Unique commit reference of software

waves.ids_properties.plugins.infrastructure_put.description

(alpha)

STR_0D

Short description of the software (type, purpose)

waves.ids_properties.plugins.infrastructure_put.name

(alpha)

STR_0D

Name of software used

waves.ids_properties.plugins.infrastructure_put.repository

(alpha)

STR_0D

URL of software repository

waves.ids_properties.plugins.infrastructure_put.version

(alpha)

STR_0D

Unique version (tag) of software

waves.ids_properties.plugins.node

(alpha)

[1...N]

STRUCT_ARRAY

Set of IDS nodes for which a plugin has been applied

waves.ids_properties.plugins.node[:].get_operation

(alpha)

[1...N]

STRUCT_ARRAY

Plugins actually used to read back a node (potentially, multiple plugins can be applied, listed in reverse order of application). This information is filled by the plugin infrastructure during the GET operation.

waves.ids_properties.plugins.node[:].get_operation[:].commit

(alpha)

STR_0D

Unique commit reference of software

waves.ids_properties.plugins.node[:].get_operation[:].description

(alpha)

STR_0D

Short description of the software (type, purpose)

waves.ids_properties.plugins.node[:].get_operation[:].name

(alpha)

STR_0D

Name of software used

waves.ids_properties.plugins.node[:].get_operation[:].parameters

(alpha)

STR_0D

List of the code specific parameters in XML format

waves.ids_properties.plugins.node[:].get_operation[:].repository

(alpha)

STR_0D

URL of software repository

waves.ids_properties.plugins.node[:].get_operation[:].version

(alpha)

STR_0D

Unique version (tag) of software

waves.ids_properties.plugins.node[:].path

(alpha)

STR_0D

Path of the node within the IDS, following the syntax given in the link below. If empty, means the plugin applies to the whole IDS.

waves.ids_properties.plugins.node[:].put_operation

(alpha)

[1...N]

STRUCT_ARRAY

Plugins used to PUT a node (potentially, multiple plugins can be applied, if so they are listed by order of application)

waves.ids_properties.plugins.node[:].put_operation[:].commit

(alpha)

STR_0D

Unique commit reference of software

waves.ids_properties.plugins.node[:].put_operation[:].description

(alpha)

STR_0D

Short description of the software (type, purpose)

waves.ids_properties.plugins.node[:].put_operation[:].name

(alpha)

STR_0D

Name of software used

waves.ids_properties.plugins.node[:].put_operation[:].parameters

(alpha)

STR_0D

List of the code specific parameters in XML format

waves.ids_properties.plugins.node[:].put_operation[:].repository

(alpha)

STR_0D

URL of software repository

waves.ids_properties.plugins.node[:].put_operation[:].version

(alpha)

STR_0D

Unique version (tag) of software

waves.ids_properties.plugins.node[:].readback

(alpha)

[1...N]

STRUCT_ARRAY

Plugins to be used to read back a node (potentially, multiple plugins can be applied, listed in reverse order of application)

waves.ids_properties.plugins.node[:].readback[:].commit

(alpha)

STR_0D

Unique commit reference of software

waves.ids_properties.plugins.node[:].readback[:].description

(alpha)

STR_0D

Short description of the software (type, purpose)

waves.ids_properties.plugins.node[:].readback[:].name

(alpha)

STR_0D

Name of software used

waves.ids_properties.plugins.node[:].readback[:].parameters

(alpha)

STR_0D

List of the code specific parameters in XML format

waves.ids_properties.plugins.node[:].readback[:].repository

(alpha)

STR_0D

URL of software repository

waves.ids_properties.plugins.node[:].readback[:].version

(alpha)

STR_0D

Unique version (tag) of software

waves.ids_properties.provenance

(alpha)

STRUCTURE

Provenance information about this IDS

waves.ids_properties.provenance.node

(alpha)

[1...N]

STRUCT_ARRAY

Set of IDS nodes for which the provenance is given. The provenance information applies to the whole structure below the IDS node. For documenting provenance information for the whole IDS, set the size of this array of structure to 1 and leave the child "path" node empty

waves.ids_properties.provenance.node[:].path

(alpha)

STR_0D

Path of the node within the IDS, following the syntax given in the link below. If empty, means the provenance information applies to the whole IDS.

waves.ids_properties.provenance.node[:].sources

(alpha)

[1...N]

STR_1D

List of sources used to import or calculate this node, identified as explained below. In case the node is the result of of a calculation / data processing, the source is an input to the process described in the "code" structure at the root of the IDS. The source can be an IDS (identified by a URI or a persitent identifier, see syntax in the link below) or non-IDS data imported directly from an non-IMAS database (identified by the command used to import the source, or the persistent identifier of the data source). Often data are obtained by a chain of processes, however only the last process input are recorded here. The full chain of provenance has then to be reconstructed recursively from the provenance information contained in the data sources.

waves.ids_properties.provider

(alpha)

STR_0D

Name of the person in charge of producing this data

waves.ids_properties.source

(obsolescent)

STR_0D

Source of the data (any comment describing the origin of the data : code, path to diagnostic signals, processing method, ...). Superseeded by the new provenance structure.

waves.ids_properties.version_put

(alpha)

STRUCTURE

Version of the access layer package used to PUT this IDS

waves.ids_properties.version_put.access_layer

(alpha)

STR_0D

Version of Access Layer used to PUT this IDS

waves.ids_properties.version_put.access_layer_language

(alpha)

STR_0D

Programming language of the Access Layer high level API used to PUT this IDS

waves.ids_properties.version_put.data_dictionary

(alpha)

STR_0D

Version of Data Dictionary used to PUT this IDS

waves.magnetic_axis

(alpha)

STRUCTURE

Magnetic axis position (used to define a poloidal angle for the 2D profiles)

waves.magnetic_axis.r

(alpha)

[waves.time]

FLT_1D (uncertain)

m

Major radius

waves.magnetic_axis.z

(alpha)

[waves.time]

FLT_1D (uncertain)

m

Height

waves.time

(alpha)

[1...N]

FLT_1D_TYPE

s

Generic time

waves.vacuum_toroidal_field

(alpha)

STRUCTURE

Characteristics of the vacuum toroidal field (used in rho_tor definition)

waves.vacuum_toroidal_field.b0

(alpha)

[waves.time]

FLT_1D (uncertain)

T

Vacuum toroidal field at R0 [T]; Positive sign means anti-clockwise when viewing from above. The product R0B0 must be consistent with the b_tor_vacuum_r field of the tf IDS.

waves.vacuum_toroidal_field.r0

(alpha)

FLT_0D (uncertain)

m

Reference major radius where the vacuum toroidal magnetic field is given (usually a fixed position such as the middle of the vessel at the equatorial midplane)